Skip to main content

AutoML Toolkit with MXNet Gluon

Project description

AutoML for Text, Image, and Tabular Data

Build Status Pypi Version Upload Python Package

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on text, image, and tabular data.

Example

# First install package from terminal:
# python3 -m pip install --upgrade pip
# python3 -m pip install --upgrade setuptools
# python3 -m pip install --upgrade "mxnet<2.0.0"
# python3 -m pip install --pre autogluon

from autogluon.tabular import TabularPrediction as task
train_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = task.fit(train_data=train_data, label='class')
performance = predictor.evaluate(test_data)

News

Announcement for previous users: The AutoGluon codebase has been modularized into namespace packages, which means you now only need those dependencies relevant to your prediction task of interest! For example, you can now work with tabular data without having to install dependencies required for AutoGluon's computer vision tasks (and vice versa). Unfortunately this improvement required a minor API change (eg. instead of from autogluon import TabularPrediction, you should now do: from autogluon.tabular import TabularPrediction), for all versions newer than v0.0.14. Documentation/tutorials under the old API may still be viewed for version 0.0.14 which is the last released version under the old API.

Resources

See the AutoGluon Website for documentation and instructions on:

Scientific Publications

Articles

Hands-on Tutorials

Train/Deploy AutoGluon in the Cloud

Citing AutoGluon

If you use AutoGluon in a scientific publication, please cite the following paper:

Erickson, Nick, et al. "AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data." arXiv preprint arXiv:2003.06505 (2020).

BibTeX entry:

@article{agtabular,
  title={AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data},
  author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
  journal={arXiv preprint arXiv:2003.06505},
  year={2020}
}

AutoGluon for Hyperparameter and Neural Architecture Search (HNAS)

AutoGluon also provides state-of-the-art tools for neural hyperparameter and architecture search, such as for example ASHA, Hyperband, Bayesian Optimization and BOHB. To get started, checkout the following resources

Also have a look at our paper "Model-based Asynchronous Hyperparameter and Neural Architecture Search" arXiv preprint arXiv:2003.10865 (2020).

@article{abohb,
  title={Model-based Asynchronous Hyperparameter and Neural Architecture Search},
  author={Klein, Aaron and Tiao, Louis and Lienart, Thibaut and Archambeau, Cedric and Seeger, Matthias},
  journal={arXiv preprint arXiv:2003.10865},
  year={2020}
}

License

This library is licensed under the Apache 2.0 License.

Contributing to AutoGluon

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.text-0.0.15b20201122.tar.gz (38.6 kB view details)

Uploaded Source

Built Distribution

autogluon.text-0.0.15b20201122-py3-none-any.whl (41.5 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.text-0.0.15b20201122.tar.gz.

File metadata

  • Download URL: autogluon.text-0.0.15b20201122.tar.gz
  • Upload date:
  • Size: 38.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.7.9

File hashes

Hashes for autogluon.text-0.0.15b20201122.tar.gz
Algorithm Hash digest
SHA256 6f8dcf8f1e0daaa6502918e04c71746f855ec97c958986f3245b3c265738fe2f
MD5 8f05933c133300a3fa1cf0f33dfb9944
BLAKE2b-256 1f08a5de727071718b7fa7e1c82093faba3cb8ac6fe98c16a5f35de910b34365

See more details on using hashes here.

File details

Details for the file autogluon.text-0.0.15b20201122-py3-none-any.whl.

File metadata

  • Download URL: autogluon.text-0.0.15b20201122-py3-none-any.whl
  • Upload date:
  • Size: 41.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.7.9

File hashes

Hashes for autogluon.text-0.0.15b20201122-py3-none-any.whl
Algorithm Hash digest
SHA256 32cb20a60aa77789f5d010b512f2297e994d9f148d2b12ab4fcd293219ba44d7
MD5 90283a72fb7f2b79b914f46b2b8b9453
BLAKE2b-256 58a9cfb49305d264a5f4d30c0c8e07b816efabada9fa966f71e4631cadd88a45

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page