Skip to main content

AutoML Toolkit with MXNet Gluon

Project description

AutoML for Text, Image, and Tabular Data

Build Status Pypi Version Upload Python Package

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on text, image, and tabular data.

Example

# First install package from terminal:
# python3 -m pip install --upgrade pip
# python3 -m pip install --upgrade setuptools
# python3 -m pip install --upgrade "mxnet<2.0.0"
# python3 -m pip install --pre autogluon

from autogluon.tabular import TabularPrediction as task
train_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = task.fit(train_data=train_data, label='class')
performance = predictor.evaluate(test_data)

News

Announcement for previous users: The AutoGluon codebase has been modularized into namespace packages, which means you now only need those dependencies relevant to your prediction task of interest! For example, you can now work with tabular data without having to install dependencies required for AutoGluon's computer vision tasks (and vice versa). Unfortunately this improvement required a minor API change (eg. instead of from autogluon import TabularPrediction, you should now do: from autogluon.tabular import TabularPrediction), for all versions newer than v0.0.15. Documentation/tutorials under the old API may still be viewed for version 0.0.15 which is the last released version under the old API.

Resources

See the AutoGluon Website for documentation and instructions on:

Scientific Publications

Articles

Hands-on Tutorials

Train/Deploy AutoGluon in the Cloud

Citing AutoGluon

If you use AutoGluon in a scientific publication, please cite the following paper:

Erickson, Nick, et al. "AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data." arXiv preprint arXiv:2003.06505 (2020).

BibTeX entry:

@article{agtabular,
  title={AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data},
  author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
  journal={arXiv preprint arXiv:2003.06505},
  year={2020}
}

AutoGluon for Hyperparameter and Neural Architecture Search (HNAS)

AutoGluon also provides state-of-the-art tools for neural hyperparameter and architecture search, such as for example ASHA, Hyperband, Bayesian Optimization and BOHB. To get started, checkout the following resources

Also have a look at our paper "Model-based Asynchronous Hyperparameter and Neural Architecture Search" arXiv preprint arXiv:2003.10865 (2020).

@article{abohb,
  title={Model-based Asynchronous Hyperparameter and Neural Architecture Search},
  author={Klein, Aaron and Tiao, Louis and Lienart, Thibaut and Archambeau, Cedric and Seeger, Matthias},
  journal={arXiv preprint arXiv:2003.10865},
  year={2020}
}

License

This library is licensed under the Apache 2.0 License.

Contributing to AutoGluon

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.text-0.0.16b20201210.tar.gz (38.7 kB view details)

Uploaded Source

Built Distribution

autogluon.text-0.0.16b20201210-py3-none-any.whl (41.6 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.text-0.0.16b20201210.tar.gz.

File metadata

  • Download URL: autogluon.text-0.0.16b20201210.tar.gz
  • Upload date:
  • Size: 38.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.9

File hashes

Hashes for autogluon.text-0.0.16b20201210.tar.gz
Algorithm Hash digest
SHA256 f6d51ac9bc6a473d970ad1a72ff1def3cfaf6ee1801c8a7f5b20ea8f58480325
MD5 10b59ddaa4409055b1841687caf1ae95
BLAKE2b-256 3bca85d8587e3c209a0f803d5587c65d43df4b0c52ea3b65964f1641e763ef54

See more details on using hashes here.

File details

Details for the file autogluon.text-0.0.16b20201210-py3-none-any.whl.

File metadata

  • Download URL: autogluon.text-0.0.16b20201210-py3-none-any.whl
  • Upload date:
  • Size: 41.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.9

File hashes

Hashes for autogluon.text-0.0.16b20201210-py3-none-any.whl
Algorithm Hash digest
SHA256 2c807494db30b09aeb7e6c53d04eef9f0206df70fa7bbc94880f70af22524015
MD5 9c070accee368961c8807bfe60a90b2e
BLAKE2b-256 d470dbdef8f6cff35c2a99117be97a4010f1e0fed0e5d210b5f3f0df710d7b3d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page