Skip to main content

AutoML for Text, Image, and Tabular Data

Project description

AutoML for Text, Image, and Tabular Data

Build Status Pypi Version GitHub license Downloads Upload Python Package

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on text, image, and tabular data.

Example

# First install package from terminal:
# python3 -m pip install -U pip
# python3 -m pip install -U setuptools wheel
# python3 -m pip install autogluon  # autogluon==0.3.1

from autogluon.tabular import TabularDataset, TabularPredictor
train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = TabularPredictor(label='class').fit(train_data, time_limit=120)  # Fit models for 120s
leaderboard = predictor.leaderboard(test_data)
AutoGluon Task Quickstart API
TabularPredictor Quick Start API
TextPredictor Quick Start API
ImagePredictor Quick Start API
ObjectDetector Quick Start API

Resources

See the AutoGluon Website for documentation and instructions on:

Scientific Publications

Articles

Hands-on Tutorials

Train/Deploy AutoGluon in the Cloud

Citing AutoGluon

If you use AutoGluon in a scientific publication, please cite the following paper:

Erickson, Nick, et al. "AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data." arXiv preprint arXiv:2003.06505 (2020).

BibTeX entry:

@article{agtabular,
  title={AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data},
  author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
  journal={arXiv preprint arXiv:2003.06505},
  year={2020}
}

If you are using AutoGluon Tabular's model distillation functionality, please cite the following paper:

Fakoor, Rasool, et al. "Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation." Advances in Neural Information Processing Systems 33 (2020).

BibTeX entry:

@article{agtabulardistill,
  title={Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation},
  author={Fakoor, Rasool and Mueller, Jonas W and Erickson, Nick and Chaudhari, Pratik and Smola, Alexander J},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

If you use AutoGluon's multimodal text+tabular functionality in a scientific publication, please cite the following paper:

Shi, Xingjian, et al. "Multimodal AutoML on Structured Tables with Text Fields." 8th ICML Workshop on Automated Machine Learning (AutoML). 2021.

BibTeX entry:

@inproceedings{agmultimodaltext,
  title={Multimodal AutoML on Structured Tables with Text Fields},
  author={Shi, Xingjian and Mueller, Jonas and Erickson, Nick and Li, Mu and Smola, Alex},
  booktitle={8th ICML Workshop on Automated Machine Learning (AutoML)},
  year={2021}
}

AutoGluon for Hyperparameter Optimization

AutoGluon also provides state-of-the-art tools for hyperparameter optimization, such as for example ASHA, Hyperband, Bayesian Optimization and BOHB.

To get started, checkout our paper "Model-based Asynchronous Hyperparameter and Neural Architecture Search" arXiv preprint arXiv:2003.10865 (2020).

@article{abohb,
  title={Model-based Asynchronous Hyperparameter and Neural Architecture Search},
  author={Klein, Aaron and Tiao, Louis and Lienart, Thibaut and Archambeau, Cedric and Seeger, Matthias},
  journal={arXiv preprint arXiv:2003.10865},
  year={2020}
}

License

This library is licensed under the Apache 2.0 License.

Contributing to AutoGluon

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.text-0.3.2b20220113.tar.gz (47.7 kB view details)

Uploaded Source

Built Distribution

autogluon.text-0.3.2b20220113-py3-none-any.whl (54.9 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.text-0.3.2b20220113.tar.gz.

File metadata

  • Download URL: autogluon.text-0.3.2b20220113.tar.gz
  • Upload date:
  • Size: 47.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for autogluon.text-0.3.2b20220113.tar.gz
Algorithm Hash digest
SHA256 ed30bd23af7459248fa7c954738efbbfeb0548e8ca199715534086fab2167a09
MD5 ef1a263acb0912886c909ac66b124e76
BLAKE2b-256 f5f5efe9c4bd4b6d5cbb6b6449f73b9bf314291976d29a0f7fc62c923e944ab1

See more details on using hashes here.

File details

Details for the file autogluon.text-0.3.2b20220113-py3-none-any.whl.

File metadata

  • Download URL: autogluon.text-0.3.2b20220113-py3-none-any.whl
  • Upload date:
  • Size: 54.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for autogluon.text-0.3.2b20220113-py3-none-any.whl
Algorithm Hash digest
SHA256 7746578ed6d7b9ee7c303de232e188a5453936cb09d7ed57e3be5e38160444b2
MD5 d71ede91f39d220adbda953c1f012693
BLAKE2b-256 373483ca86149c1d9c5dcb3dbca56b46bf59981a9a6afbab573f71ada727bb2d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page