Skip to main content

AutoML Toolkit with MXNet Gluon

Project description

AutoML for Text, Image, and Tabular Data

Build Status Pypi Version Upload Python Package

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on text, image, and tabular data.

Example

# First install package from terminal:
# python3 -m pip install --upgrade pip
# python3 -m pip install --upgrade setuptools
# python3 -m pip install --upgrade "mxnet<2.0.0"
# python3 -m pip install --pre autogluon

from autogluon.tabular import TabularPrediction as task
train_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = task.fit(train_data=train_data, label='class')
performance = predictor.evaluate(test_data)

News

Announcement for previous users: The AutoGluon codebase has been modularized into namespace packages, which means you now only need those dependencies relevant to your prediction task of interest! For example, you can now work with tabular data without having to install dependencies required for AutoGluon's computer vision tasks (and vice versa). Unfortunately this improvement required a minor API change (eg. instead of from autogluon import TabularPrediction, you should now do: from autogluon.tabular import TabularPrediction), for all versions newer than v0.0.14. Documentation/tutorials under the old API may still be viewed for version 0.0.14 which is the last released version under the old API.

Resources

See the AutoGluon Website for documentation and instructions on:

Scientific Publications

Articles

Hands-on Tutorials

Train/Deploy AutoGluon in the Cloud

Citing AutoGluon

If you use AutoGluon in a scientific publication, please cite the following paper:

Erickson, Nick, et al. "AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data." arXiv preprint arXiv:2003.06505 (2020).

BibTeX entry:

@article{agtabular,
  title={AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data},
  author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
  journal={arXiv preprint arXiv:2003.06505},
  year={2020}
}

AutoGluon for Hyperparameter and Neural Architecture Search (HNAS)

AutoGluon also provides state-of-the-art tools for neural hyperparameter and architecture search, such as for example ASHA, Hyperband, Bayesian Optimization and BOHB. To get started, checkout the following resources

Also have a look at our paper "Model-based Asynchronous Hyperparameter and Neural Architecture Search" arXiv preprint arXiv:2003.10865 (2020).

@article{abohb,
  title={Model-based Asynchronous Hyperparameter and Neural Architecture Search},
  author={Klein, Aaron and Tiao, Louis and Lienart, Thibaut and Archambeau, Cedric and Seeger, Matthias},
  journal={arXiv preprint arXiv:2003.10865},
  year={2020}
}

License

This library is licensed under the Apache 2.0 License.

Contributing to AutoGluon

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.vision-0.0.15b20201117.tar.gz (32.3 kB view details)

Uploaded Source

Built Distribution

autogluon.vision-0.0.15b20201117-py3-none-any.whl (39.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.vision-0.0.15b20201117.tar.gz.

File metadata

  • Download URL: autogluon.vision-0.0.15b20201117.tar.gz
  • Upload date:
  • Size: 32.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.7.9

File hashes

Hashes for autogluon.vision-0.0.15b20201117.tar.gz
Algorithm Hash digest
SHA256 594079f830df1128a72653d734c6ac7bc9a81642963f8796d85f779bb25c22c8
MD5 5b43cc583bd8b13ef684b77dc75ec901
BLAKE2b-256 b8601f7986f4d13d565d8cd7817ecc24ab93ca9352e72c5bb9d7b1ca41121bdf

See more details on using hashes here.

File details

Details for the file autogluon.vision-0.0.15b20201117-py3-none-any.whl.

File metadata

  • Download URL: autogluon.vision-0.0.15b20201117-py3-none-any.whl
  • Upload date:
  • Size: 39.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.7.9

File hashes

Hashes for autogluon.vision-0.0.15b20201117-py3-none-any.whl
Algorithm Hash digest
SHA256 12c5e0291a8a3b30b13943a52e221eecbba9b17c445a6b0c9247b25132902088
MD5 580cf33c9812b0fbf4458a52ef3a0d2c
BLAKE2b-256 5f0634c6be4a4ade03042ef000ff92a5b3ce88af1073d7ea27d92af6b5a7a6bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page