Skip to main content

AutoML for Image, Text, and Tabular Data

Project description

AutoML for Image, Text, Time Series, and Tabular Data

Latest Release Continuous Integration Platform Tests Python Versions GitHub license Downloads Twitter

Install Instructions | Documentation (Stable | Latest)

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon  # autogluon==0.6.2

from autogluon.tabular import TabularDataset, TabularPredictor
train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = TabularPredictor(label='class').fit(train_data, time_limit=120)  # Fit models for 120s
leaderboard = predictor.leaderboard(test_data)
AutoGluon Task Quickstart API
TabularPredictor Quick Start API
TextPredictor Quick Start API
ImagePredictor Quick Start API
ObjectDetector Quick Start API
MultiModalPredictor Quick Start API
TimeSeriesPredictor Quick Start API

Resources

See the AutoGluon Website for documentation and instructions on:

Refer to the AutoGluon Roadmap for details on upcoming features and releases.

Scientific Publications

Articles

Hands-on Tutorials

Train/Deploy AutoGluon in the Cloud

Contributing to AutoGluon

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

Citing AutoGluon

If you use AutoGluon in a scientific publication, please cite the following paper:

Erickson, Nick, et al. "AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data." arXiv preprint arXiv:2003.06505 (2020).

BibTeX entry:

@article{agtabular,
  title={AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data},
  author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
  journal={arXiv preprint arXiv:2003.06505},
  year={2020}
}

If you are using AutoGluon Tabular's model distillation functionality, please cite the following paper:

Fakoor, Rasool, et al. "Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation." Advances in Neural Information Processing Systems 33 (2020).

BibTeX entry:

@article{agtabulardistill,
  title={Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation},
  author={Fakoor, Rasool and Mueller, Jonas W and Erickson, Nick and Chaudhari, Pratik and Smola, Alexander J},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

If you use AutoGluon's multimodal text+tabular functionality in a scientific publication, please cite the following paper:

Shi, Xingjian, et al. "Multimodal AutoML on Structured Tables with Text Fields." 8th ICML Workshop on Automated Machine Learning (AutoML). 2021.

BibTeX entry:

@inproceedings{agmultimodaltext,
  title={Multimodal AutoML on Structured Tables with Text Fields},
  author={Shi, Xingjian and Mueller, Jonas and Erickson, Nick and Li, Mu and Smola, Alex},
  booktitle={8th ICML Workshop on Automated Machine Learning (AutoML)},
  year={2021}
}

AutoGluon for Hyperparameter Optimization

AutoGluon's state-of-the-art tools for hyperparameter optimization, such as ASHA, Hyperband, Bayesian Optimization and BOHB have moved to the stand-alone package syne-tune.

To learn more, checkout our paper "Model-based Asynchronous Hyperparameter and Neural Architecture Search" arXiv preprint arXiv:2003.10865 (2020).

@article{abohb,
  title={Model-based Asynchronous Hyperparameter and Neural Architecture Search},
  author={Klein, Aaron and Tiao, Louis and Lienart, Thibaut and Archambeau, Cedric and Seeger, Matthias},
  journal={arXiv preprint arXiv:2003.10865},
  year={2020}
}

License

This library is licensed under the Apache 2.0 License.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.vision-0.6.3b20230125.tar.gz (38.2 kB view details)

Uploaded Source

Built Distribution

autogluon.vision-0.6.3b20230125-py3-none-any.whl (50.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.vision-0.6.3b20230125.tar.gz.

File metadata

File hashes

Hashes for autogluon.vision-0.6.3b20230125.tar.gz
Algorithm Hash digest
SHA256 f4c7ef44f2fca11b1b4e72f3483e4d6d86665f6fb8b2aba1c84f1b643547c0d1
MD5 f63c912bc80145842282aac04f6ae882
BLAKE2b-256 50057ab6337a66ee87d785c91a6ab7f973f10ee1de94aa01e338493c3d3e9db0

See more details on using hashes here.

File details

Details for the file autogluon.vision-0.6.3b20230125-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.vision-0.6.3b20230125-py3-none-any.whl
Algorithm Hash digest
SHA256 5c6fa927fb085fa9155ef902569fed2ff69663040836989788073a622608c503
MD5 dbd2c45cd38563bcca97d36129f860cd
BLAKE2b-256 0de25fb264a0d9c2ebf0e51e8dd88bb9e55b8bf1220adcef580daf33aaa8d2fc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page