Skip to main content

AutoML Toolkit with MXNet Gluon

Project description

AutoML Toolkit for Deep Learning

Build Status Pypi Version Upload Python Package

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy deep learning models on tabular, image, and text data.

Example

# First install package from terminal:  pip install mxnet autogluon

from autogluon import TabularPrediction as task
train_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = task.fit(train_data=train_data, label='class')
performance = predictor.evaluate(test_data)

Resources

See the AutoGluon Website for documentation and instructions on:

Scientific Publications

Articles

Train/Deploy AutoGluon in the Cloud

Citing AutoGluon

If you use AutoGluon in a scientific publication, please cite the following paper:

Erickson, Nick, et al. "AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data." arXiv preprint arXiv:2003.06505 (2020).

BibTeX entry:

@article{agtabular,
  title={AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data},
  author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
  journal={arXiv preprint arXiv:2003.06505},
  year={2020}
}

AutoGluon for Hyperparameter and Neural Architecture Search (HNAS)

AutoGluon also provides state-of-the-art tools for neural hyperparameter and architecture search, such as for example ASHA, Hyperband, Bayesian Optimization and BOHB. To get started, checkout the following resources

Also have a look at our paper "Model-based Asynchronous Hyperparameter and Neural Architecture Search" arXiv preprint arXiv:2003.10865 (2020).

@article{abohb,
  title={Model-based Asynchronous Hyperparameter and Neural Architecture Search},
  author={Klein, Aaron and Tiao, Louis and Lienart, Thibaut and Archambeau, Cedric and Seeger, Matthias} 
  journal={arXiv preprint arXiv:2003.10865},
  year={2020}
}

License

This library is licensed under the Apache 2.0 License.

Contributing to AutoGluon

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon-0.0.14b20200908.tar.gz (468.2 kB view details)

Uploaded Source

Built Distribution

autogluon-0.0.14b20200908-py3-none-any.whl (613.5 kB view details)

Uploaded Python 3

File details

Details for the file autogluon-0.0.14b20200908.tar.gz.

File metadata

  • Download URL: autogluon-0.0.14b20200908.tar.gz
  • Upload date:
  • Size: 468.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.9

File hashes

Hashes for autogluon-0.0.14b20200908.tar.gz
Algorithm Hash digest
SHA256 a321ef3a791f146cbd19a441250ab1a981ab6af2c7761c694d8d77c0913abd86
MD5 bd4065efd06624012ef2477056937493
BLAKE2b-256 5b3d8f10e9717143ee9280ac3022d63bfa3d32a5be4b69b442eb92a55eb01bc2

See more details on using hashes here.

File details

Details for the file autogluon-0.0.14b20200908-py3-none-any.whl.

File metadata

  • Download URL: autogluon-0.0.14b20200908-py3-none-any.whl
  • Upload date:
  • Size: 613.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.9

File hashes

Hashes for autogluon-0.0.14b20200908-py3-none-any.whl
Algorithm Hash digest
SHA256 294f01a47b10a33b15df854d4229b29dee16e726f29fe50448d76702aff580d1
MD5 bee1ac817e114e8c88f278a8658f5cc1
BLAKE2b-256 a775aee5de563148df651e8d603d3e785d6098d4cd7327925a3db8dd940813a1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page