Skip to main content

AutoML Toolkit with MXNet Gluon

Project description

AutoML Toolkit for Deep Learning

Build Status Pypi Version Upload Python Package

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy deep learning models on tabular, image, and text data.

Example

# First install package from terminal:  pip install mxnet autogluon

from autogluon import TabularPrediction as task
train_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = task.fit(train_data=train_data, label='class')
performance = predictor.evaluate(test_data)

Resources

See the AutoGluon Website for documentation and instructions on:

Scientific Publications

Articles

Hands-on Tutorials

Train/Deploy AutoGluon in the Cloud

Citing AutoGluon

If you use AutoGluon in a scientific publication, please cite the following paper:

Erickson, Nick, et al. "AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data." arXiv preprint arXiv:2003.06505 (2020).

BibTeX entry:

@article{agtabular,
  title={AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data},
  author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
  journal={arXiv preprint arXiv:2003.06505},
  year={2020}
}

AutoGluon for Hyperparameter and Neural Architecture Search (HNAS)

AutoGluon also provides state-of-the-art tools for neural hyperparameter and architecture search, such as for example ASHA, Hyperband, Bayesian Optimization and BOHB. To get started, checkout the following resources

Also have a look at our paper "Model-based Asynchronous Hyperparameter and Neural Architecture Search" arXiv preprint arXiv:2003.10865 (2020).

@article{abohb,
  title={Model-based Asynchronous Hyperparameter and Neural Architecture Search},
  author={Klein, Aaron and Tiao, Louis and Lienart, Thibaut and Archambeau, Cedric and Seeger, Matthias}
  journal={arXiv preprint arXiv:2003.10865},
  year={2020}
}

License

This library is licensed under the Apache 2.0 License.

Contributing to AutoGluon

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon-0.0.14b20200928.tar.gz (473.2 kB view details)

Uploaded Source

Built Distribution

autogluon-0.0.14b20200928-py3-none-any.whl (620.1 kB view details)

Uploaded Python 3

File details

Details for the file autogluon-0.0.14b20200928.tar.gz.

File metadata

  • Download URL: autogluon-0.0.14b20200928.tar.gz
  • Upload date:
  • Size: 473.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.7.9

File hashes

Hashes for autogluon-0.0.14b20200928.tar.gz
Algorithm Hash digest
SHA256 2d57e581689b5f1cdd4db34cda40275a806d77d5064826d3493866d9ee144e1f
MD5 f639393b7f21b2c0eb889c063afd2399
BLAKE2b-256 0c868bcd9ccdc53b7909818168d344134635ab5d5a13ce086f24e97a284e0c3e

See more details on using hashes here.

File details

Details for the file autogluon-0.0.14b20200928-py3-none-any.whl.

File metadata

  • Download URL: autogluon-0.0.14b20200928-py3-none-any.whl
  • Upload date:
  • Size: 620.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.7.9

File hashes

Hashes for autogluon-0.0.14b20200928-py3-none-any.whl
Algorithm Hash digest
SHA256 b408e5b29966ad117d95980bdbd093b66a7cb032b00a5f84ad6b76fe9e61312a
MD5 c4de6ec4b2e7b655bd0c8b4a514272f5
BLAKE2b-256 f50e02b458282dff9370f081329f6d6bb890d2e74b38a56a0e771b297dee18dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page