Skip to main content

AutoML Toolkit with MXNet Gluon

Project description

AutoML Toolkit for Deep Learning

Build Status Pypi Version Upload Python Package

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy deep learning models on tabular, image, and text data.

Example

# First install package from terminal:
# python3 -m pip install --upgrade pip
# python3 -m pip install --upgrade "mxnet<2.0.0"
# python3 -m pip install autogluon

from autogluon import TabularPrediction as task
train_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = task.fit(train_data=train_data, label='class')
performance = predictor.evaluate(test_data)

Resources

See the AutoGluon Website for documentation and instructions on:

Scientific Publications

Articles

Hands-on Tutorials

Train/Deploy AutoGluon in the Cloud

Citing AutoGluon

If you use AutoGluon in a scientific publication, please cite the following paper:

Erickson, Nick, et al. "AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data." arXiv preprint arXiv:2003.06505 (2020).

BibTeX entry:

@article{agtabular,
  title={AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data},
  author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
  journal={arXiv preprint arXiv:2003.06505},
  year={2020}
}

AutoGluon for Hyperparameter and Neural Architecture Search (HNAS)

AutoGluon also provides state-of-the-art tools for neural hyperparameter and architecture search, such as for example ASHA, Hyperband, Bayesian Optimization and BOHB. To get started, checkout the following resources

Also have a look at our paper "Model-based Asynchronous Hyperparameter and Neural Architecture Search" arXiv preprint arXiv:2003.10865 (2020).

@article{abohb,
  title={Model-based Asynchronous Hyperparameter and Neural Architecture Search},
  author={Klein, Aaron and Tiao, Louis and Lienart, Thibaut and Archambeau, Cedric and Seeger, Matthias}
  journal={arXiv preprint arXiv:2003.10865},
  year={2020}
}

License

This library is licensed under the Apache 2.0 License.

Contributing to AutoGluon

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon-0.0.15b20201006.tar.gz (475.7 kB view details)

Uploaded Source

Built Distribution

autogluon-0.0.15b20201006-py3-none-any.whl (622.5 kB view details)

Uploaded Python 3

File details

Details for the file autogluon-0.0.15b20201006.tar.gz.

File metadata

  • Download URL: autogluon-0.0.15b20201006.tar.gz
  • Upload date:
  • Size: 475.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.7.9

File hashes

Hashes for autogluon-0.0.15b20201006.tar.gz
Algorithm Hash digest
SHA256 a3d79ad0ff02eba025a3f9ea9c3b917cb5d2d1fdeaecdeb280c26ff3e8489530
MD5 7ad4765c0c249bb0d5c3207bf79246cb
BLAKE2b-256 6cab29cb11005084469815fd914a1e96e3f8a2b6574437cd7e425b4fef1a738f

See more details on using hashes here.

File details

Details for the file autogluon-0.0.15b20201006-py3-none-any.whl.

File metadata

  • Download URL: autogluon-0.0.15b20201006-py3-none-any.whl
  • Upload date:
  • Size: 622.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.7.9

File hashes

Hashes for autogluon-0.0.15b20201006-py3-none-any.whl
Algorithm Hash digest
SHA256 a3e3371b43ae167e0df2b7909d95728d02cc88e7b9d6aa42d81d40b2886e178e
MD5 e90dd0fba8fc2d6b0fd00840b41797a7
BLAKE2b-256 d68e239398782f18af3a848e15a59364f9955df9ee7cb208418b50c14c0ebb3f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page