Skip to main content

AutoML for Image, Text, and Tabular Data

Project description

AutoML for Image, Text, Time Series, and Tabular Data

Latest Release Continuous Integration Platform Tests Broken Link Checker Python Versions GitHub license Downloads Twitter

Install Instructions | Documentation (Stable | Latest)

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon  # autogluon==0.8.2

from autogluon.tabular import TabularDataset, TabularPredictor
train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = TabularPredictor(label='class').fit(train_data, time_limit=120)  # Fit models for 120s
leaderboard = predictor.leaderboard(test_data)
AutoGluon Task Quickstart API
TabularPredictor Quick Start API
MultiModalPredictor Quick Start API
TimeSeriesPredictor Quick Start API

Resources

See the AutoGluon Website for documentation and instructions on:

Refer to the AutoGluon Roadmap for details on upcoming features and releases.

Scientific Publications

Articles

Hands-on Tutorials

Train/Deploy AutoGluon in the Cloud

Contributing to AutoGluon

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

Citing AutoGluon

If you use AutoGluon in a scientific publication, please cite the following paper:

Erickson, Nick, et al. "AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data." arXiv preprint arXiv:2003.06505 (2020).

BibTeX entry:

@article{agtabular,
  title={AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data},
  author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
  journal={arXiv preprint arXiv:2003.06505},
  year={2020}
}

If you are using AutoGluon Tabular's model distillation functionality, please cite the following paper:

Fakoor, Rasool, et al. "Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation." Advances in Neural Information Processing Systems 33 (2020).

BibTeX entry:

@article{agtabulardistill,
  title={Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation},
  author={Fakoor, Rasool and Mueller, Jonas W and Erickson, Nick and Chaudhari, Pratik and Smola, Alexander J},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

If you use AutoGluon's multimodal text+tabular functionality in a scientific publication, please cite the following paper:

Shi, Xingjian, et al. "Multimodal AutoML on Structured Tables with Text Fields." 8th ICML Workshop on Automated Machine Learning (AutoML). 2021.

BibTeX entry:

@inproceedings{agmultimodaltext,
  title={Multimodal AutoML on Structured Tables with Text Fields},
  author={Shi, Xingjian and Mueller, Jonas and Erickson, Nick and Li, Mu and Smola, Alex},
  booktitle={8th ICML Workshop on Automated Machine Learning (AutoML)},
  year={2021}
}

If you use AutoGluon's time series forecasting functionality in a scientific publication, please cite the following paper:

@inproceedings{agtimeseries,
  title={{AutoGluon-TimeSeries}: {AutoML} for Probabilistic Time Series Forecasting},
  author={Shchur, Oleksandr and Turkmen, Caner and Erickson, Nick and Shen, Huibin and Shirkov, Alexander and Hu, Tony and Wang, Yuyang},
  booktitle={International Conference on Automated Machine Learning},
  year={2023}
}

AutoGluon for Hyperparameter Optimization

AutoGluon's state-of-the-art tools for hyperparameter optimization, such as ASHA, Hyperband, Bayesian Optimization and BOHB have moved to the stand-alone package syne-tune.

To learn more, checkout our paper "Model-based Asynchronous Hyperparameter and Neural Architecture Search" arXiv preprint arXiv:2003.10865 (2020).

@article{abohb,
  title={Model-based Asynchronous Hyperparameter and Neural Architecture Search},
  author={Klein, Aaron and Tiao, Louis and Lienart, Thibaut and Archambeau, Cedric and Seeger, Matthias},
  journal={arXiv preprint arXiv:2003.10865},
  year={2020}
}

License

This library is licensed under the Apache 2.0 License.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon-0.8.3b20231005.tar.gz (5.5 kB view details)

Uploaded Source

Built Distribution

autogluon-0.8.3b20231005-py3-none-any.whl (10.1 kB view details)

Uploaded Python 3

File details

Details for the file autogluon-0.8.3b20231005.tar.gz.

File metadata

  • Download URL: autogluon-0.8.3b20231005.tar.gz
  • Upload date:
  • Size: 5.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.18

File hashes

Hashes for autogluon-0.8.3b20231005.tar.gz
Algorithm Hash digest
SHA256 d67db90408965ff59e5e3be73723db81b98cea7452cc15b634fea2ad85a50db4
MD5 6777b8233f10d626931d2b7136f1e480
BLAKE2b-256 57cacef988944c0c0c5a4c9b85fc89cee75d45a76f3d3dc542b97ea71c75acb1

See more details on using hashes here.

File details

Details for the file autogluon-0.8.3b20231005-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon-0.8.3b20231005-py3-none-any.whl
Algorithm Hash digest
SHA256 50f0ad91e6f7a2e06e379887e6cf2b2e952883d2841bf805783834a77cee4383
MD5 344f12363cb1ff215433332b5234c426
BLAKE2b-256 e152c9682df8d5ac0395e740bb010ff8d7979215f7f5c0b7b8e3d4f5cef72348

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page