Skip to main content

A wrapper of scipy minimize with automatic gradient and hessian computation.

Project description

autograd-minimize

autograd-minimize is a wrapper around the minimize routine of scipy which uses the autograd capacities of jax, tensorflow or pytorch to compute automatically the gradients, hessian vector products and hessians.

It also accepts functions of more than one variables as input.

Installation

pip install autograd-minimize

Basic usage

It uses tensorflow as the default backend:

import tensorflow as tf
from autograd_minimize import minimize

def rosen_tf(x):
    return tf.reduce_sum(100.0*(x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0)

res = minimize(rosen_tf, np.array([0.,0.]))
print(res.x)
>>> array([0.99999912, 0.99999824])

But you can also use pytorch:

import torch
from autograd_minimize import minimize
import numpy as np

def rosen_torch(x):
    return (100.0*(x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0).sum()
    
res = minimize(rosen_torch, np.array([0.,0.]), backend='torch')
print(res.x)
>>> array([0.99999912, 0.99999824])

Or jax:

import numpy as np
from autograd_minimize import minimize

rosen_jax=lambda x: (100.0*(x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0).sum()
res = minimize(rosen_jax, np.array([0.,0.]), backend='jax')
print(res.x)
>>> array([0.99999912, 0.99999824])

You can also try other optimization methods such as Newton-CG which uses automatic computation of the hessian vector product (hvp). Let's as well increase the precision of hvp and gradient computation to float64 and the tolerance to 1e-8:

import numpy as np
res = minimize(rosen_tf, np.array([0.,0.]), method='Newton-CG', precision='float64', tol=1e-8)
print(np.mean(res.x-1))
>>> -2.6886433635020524e-09

Or we can use the trust-exact method (with automatic computation of the hessian):

import numpy as np
res = minimize(rosen_tf, np.array([0.,0.]), method='trust-exact', precision='float64', tol=1e-8)
print(np.mean(res.x-1))
>>> -1.6946999359390702e-12

Let's now try to do matrix factorization. In this case it is much easier to deal with a function with two inputs, where the input should be a dict or a list with a similar signature as the function:

shape = (10, 15)
inner_shape=3
from numpy.random import random
U = random((shape[0], inner_shape))
V = random((inner_shape, shape[1]))
prod = U@V

def mat_fac(U, V):
    return tf.reduce_mean((U@V-tf.constant(prod, dtype=tf.float32))**2)

x0 = {'U': -random((shape[0], inner_shape)), 'V': random((inner_shape, shape[1]))}

tic = time()
res = minimize(mat_fac, x0)
print(res.fun)
>>> 6.136937713563384e-08

Bounds

You can also set bounds (only for the methods: L-BFGS-B, TNC, SLSQP, Powell, and trust-constr):

If bounds is a tuple, the same bound is applied to all variables:

res = minimize(mat_fac, x0, bounds=(None, 0))
print(res.x['U'].mean())
>>> -0.6171053993128699

You can apply bounds only to a subset of variables by using a list or a dict (but it should be the same as the format of input x0):

res = minimize(mat_fac, x0, bounds={'U': (None, 0), 'V': (-1, None)})
print(res.x['U'].mean(), res.x['V'].mean())
>>> -0.8173837691822693 0.11222992115637932

Inside each variable of the dict/list, you can pass a numpy array or a list of bounds which the same shape or len as the variable to specify in more details the bounds:

res = minimize(mat_fac, x0, bounds={'U': (0, None), 'V': [(0, None)]*inner_shape*shape[1]})

Keras models

You can also optimize keras models by transforming them into a function of their parameters, using autograd_minimize.tf_wrapper.tf_function_factory:

import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
from autograd_minimize.tf_wrapper import tf_function_factory
from autograd_minimize import minimize 
import tensorflow as tf

#### Prepares data
X = np.random.random((200, 2))
y = X[:,:1]*2+X[:,1:]*0.4-1

#### Creates model
model = keras.Sequential([keras.Input(shape=2),
                          layers.Dense(1)])

# Transforms model into a function of its parameter
func, params = tf_function_factory(model, tf.keras.losses.MSE, X, y)

# Minimization
res = minimize(func, params, method='L-BFGS-B')

Note that you can do the same on torch models by replacing autograd_minimize.tf_wrapper.tf_function_factory by autograd_minimize.torch_wrapper.torch_function_factory.

Constraints

And you can set constraints (with automatic computation of the jacobian). An example is given in examples/multiknapsack, where the (relaxed) multiknapsack problem is solved.

ToDo

  • Adds comparison with LBFGS from pytorch or keras

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autograd_minimize-0.3.0.tar.gz (14.3 kB view details)

Uploaded Source

Built Distribution

autograd_minimize-0.3.0-py3-none-any.whl (13.5 kB view details)

Uploaded Python 3

File details

Details for the file autograd_minimize-0.3.0.tar.gz.

File metadata

  • Download URL: autograd_minimize-0.3.0.tar.gz
  • Upload date:
  • Size: 14.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for autograd_minimize-0.3.0.tar.gz
Algorithm Hash digest
SHA256 117bf27c236a2cc5595183c0a18bee5f973ee17467771428b100a80e8d6818e2
MD5 af623c40c056bbe4d3e3bb171cd03171
BLAKE2b-256 2b817553f3eb6a419b52be3ebe943f5ff35b18a22c49691d39f17009c8c296f2

See more details on using hashes here.

File details

Details for the file autograd_minimize-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for autograd_minimize-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5892e9c42cdc4a9cd7502ad639de01025d244b784afeacd7dfa09d86fd59e185
MD5 7fe732e9f16f37b782d042430466ce51
BLAKE2b-256 e002250cd776cb4a38e32f3040897265534b59fee451dc55f6c10db02d2cd4d9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page