Skip to main content

A wrapper of scipy minimize with automatic gradient and hessian computation.

Project description

autograd-minimize

autograd-minimize is a wrapper around the minimize routine of scipy which uses the autograd capacities of tensorflow or pytorch to compute automatically the gradients, hessian vector products and hessians.

It also accepts functions of more than one variables as input.

Installation

pip install autograd-minimize

Basic usage

It uses tensorflow as the default backend:

import tensorflow as tf
from autograd_minimize import minimize

def rosen_tf(x):
    return tf.reduce_sum(100.0*(x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0)

res = minimize(rosen_tf, np.array([0.,0.]))
print(res.x)
>>> array([0.99999912, 0.99999824])

But you can also use pytorch:

import torch
from autograd_minimize import minimize

def rosen_torch(x):
    return (100.0*(x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0).sum()

res = minimize(rosen_torch, np.array([0.,0.]), backend='torch')
print(res.x)
>>> array([0.99999912, 0.99999824])

You can also try other optimization methods such as Newton-CG which uses automatic computation of the hessian vector product (hvp). Let's as well increase the precision of hvp and gradient computation to float64 and the tolerance to 1e-8:

import numpy as np
res = minimize(rosen_tf, np.array([0.,0.]), method='Newton-CG', precision='float64', tol=1e-8)
print(np.mean(res.x-1))
>>> -2.6886433635020524e-09

Or we can use the trust-exact method (with automatic computation of the hessian):

import numpy as np
res = minimize(rosen_tf, np.array([0.,0.]), method='trust-exact', precision='float64', tol=1e-8)
print(np.mean(res.x-1))
>>> -1.6946999359390702e-12

Let's now try to do matrix factorization. In this case it is much easier to deal with a function with two inputs, where the input should be a dict or a list with a similar signature as the function:

shape = (10, 15)
inner_shape=3
from numpy.random import random
U = random((shape[0], inner_shape))
V = random((inner_shape, shape[1]))
prod = U@V

def mat_fac(U=None, V=None):
    return tf.reduce_mean((U@V-tf.constant(prod, dtype=tf.float32))**2)

x0 = {'U': -random((shape[0], inner_shape)), 'V': random((inner_shape, shape[1]))}

tic = time()
res = minimize(mat_fac, x0)
print(res.fun)
>>> 6.136937713563384e-08

Bounds

You can also set bounds (only for the methods: L-BFGS-B, TNC, SLSQP, Powell, and trust-constr):

If bounds is a tuple, the same bound is applied to all variables:

res = minimize(mat_fac, x0, bounds=(None, 0))
print(res.x['U'].mean())
>>> -0.6171053993128699

You can apply bounds only to a subset of variables by using a list or a dict (but it should be the same as the format of input x0):

res = minimize(mat_fac, x0, bounds={'U': (None, 0), 'V': (-1, None)})
print(res.x['U'].mean(), res.x['V'].mean())
>>> -0.8173837691822693 0.11222992115637932

Inside each variable of the dict/list, you can pass a numpy array or a list of bounds which the same shape or len as the variable to specify in more details the bounds:

res = minimize(mat_fac, x0, bounds={'U': (0, None), 'V': [(0, None)]*inner_shape*shape[1]})

Constraints

And you can set constraints (with automatic computation of the jacobian). An example is given in examples/multiknapsack, where the (relaxed) multiknapsack problem is solved.

ToDo

  • Adds optimization of keras or pytorch models (as shown here)
  • Adds comparison with LBFGS from pytorch or keras

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autograd_minimize-0.1.1.tar.gz (12.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

autograd_minimize-0.1.1-py3-none-any.whl (9.9 kB view details)

Uploaded Python 3

File details

Details for the file autograd_minimize-0.1.1.tar.gz.

File metadata

  • Download URL: autograd_minimize-0.1.1.tar.gz
  • Upload date:
  • Size: 12.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.3

File hashes

Hashes for autograd_minimize-0.1.1.tar.gz
Algorithm Hash digest
SHA256 0db6941d9430a6c2c5c7afe18d2285c26d0071e554264527c0ccf2c09d57c5fe
MD5 dad1bf4066f9f64deefbb8fdfb3f7998
BLAKE2b-256 f46770ba65e89920994060ce2511f623ba3d2a116ff13f10afd9f86fd6c1c7ec

See more details on using hashes here.

File details

Details for the file autograd_minimize-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: autograd_minimize-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 9.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.3

File hashes

Hashes for autograd_minimize-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1b5abe1e82f2878e3e659196858b675bed601ad821e10c692aaea7fe254ae061
MD5 1959f007be3d462776ab77c011b9a27f
BLAKE2b-256 349c1d73880ce9e48b59e4debcbdf720e504f129d9338592099fd4120a42bdc5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page