Skip to main content

AutoML for deep learning

Project description

logo

codecov PyPI version Python Tensorflow contributions welcome

Official Website: autokeras.com

AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras is to make machine learning accessible to everyone.

Example

Here is a short example of using the package.

import autokeras as ak

clf = ak.ImageClassifier()
clf.fit(x_train, y_train)
results = clf.predict(x_test)

For a detailed tutorial, please check here.

Installation

To install the package, please use the pip installation as follows:

pip3 install autokeras

Please follow the installation guide for more details.

Note: Currently, AutoKeras is only compatible with Python >= 3.5 and TensorFlow >= 2.3.0.

Community

Stay Up-to-Date

Twitter: You can also follow us on Twitter @autokeras for the latest news.

Emails: Subscribe to our email list to receive announcements.

Questions and Discussions

GitHub Discussions: Ask your questions on our GitHub Discussions. It is a forum hosted on GitHub. We will monitor and answer the questions there.

Instant Communications

Slack: Request an invitation. Use the #autokeras channel for communication.

QQ Group: Join our QQ group 1150366085. Password: akqqgroup

Online Meetings: Join the online meeting Google group. The calendar event will appear on your Google Calendar.

Contributing Code

We engage in keeping everything about AutoKeras open to the public. Everyone can easily join as a developer. Here is how we manage our project.

  • Triage the issues: We pick the critical issues to work on from GitHub issues. They will be added to this Project. Some of the issues will then be added to the milestones, which are used to plan for the releases.
  • Assign the tasks: We assign the tasks to people during the online meetings.
  • Discuss: We can have discussions in multiple places. The code reviews are on GitHub. Questions can be asked in Slack or during meetings.

Please join our Slack and send Haifeng Jin a message. Or drop by our online meetings and talk to us. We will help you get started!

Refer to our Contributing Guide to learn the best practices.

Thank all the contributors!

Donation

We accept financial support on Open Collective. Thank every backer for supporting us!

Cite this work

Haifeng Jin, Qingquan Song, and Xia Hu. "Auto-keras: An efficient neural architecture search system." Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019. (Download)

Biblatex entry:

@inproceedings{jin2019auto,
  title={Auto-Keras: An Efficient Neural Architecture Search System},
  author={Jin, Haifeng and Song, Qingquan and Hu, Xia},
  booktitle={Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
  pages={1946--1956},
  year={2019},
  organization={ACM}
}

Acknowledgements

The authors gratefully acknowledge the D3M program of the Defense Advanced Research Projects Agency (DARPA) administered through AFRL contract FA8750-17-2-0116; the Texas A&M College of Engineering, and Texas A&M University.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autokeras-1.0.14.tar.gz (91.3 kB view details)

Uploaded Source

Built Distribution

autokeras-1.0.14-py3-none-any.whl (166.2 kB view details)

Uploaded Python 3

File details

Details for the file autokeras-1.0.14.tar.gz.

File metadata

  • Download URL: autokeras-1.0.14.tar.gz
  • Upload date:
  • Size: 91.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.6.13

File hashes

Hashes for autokeras-1.0.14.tar.gz
Algorithm Hash digest
SHA256 64d5455969c324b2b0bd627bf50fee45d134a2bc23a5e02d37ecaf0a8e8965cb
MD5 9bed57818ab794a2a841d22a10e335df
BLAKE2b-256 9e58a76cfba4f3f327b5b38c9bd2be45db715c0b3d6f8403651339c45a9602e3

See more details on using hashes here.

File details

Details for the file autokeras-1.0.14-py3-none-any.whl.

File metadata

  • Download URL: autokeras-1.0.14-py3-none-any.whl
  • Upload date:
  • Size: 166.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.6.13

File hashes

Hashes for autokeras-1.0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 cd399428b41663c804bc2d9cb2169389e8cab941cb4de752d3744a6546cea88e
MD5 abd47a33f37de3524699a9a131ee2128
BLAKE2b-256 75c79a8d37ae2d7e66ad545abc722b8d2d4311325c5cd23bd138085e78996cd4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page