Skip to main content

AutoML for deep learning

Project description

drawing

codecov PyPI version

Official Website: autokeras.com

AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras is to make machine learning accessible for everyone.

Example

Here is a short example of using the package.

import autokeras as ak

clf = ak.ImageClassifier()
clf.fit(x_train, y_train)
results = clf.predict(x_test)

For detailed tutorial, please check here.

Installation

To install the package, please use the pip installation as follows:

pip3 install git+https://github.com/keras-team/keras-tuner.git@1.0.2rc1
pip3 install autokeras==1.0.5

Please follow the installation guide for more details.

Note: Currently, AutoKeras is only compatible with Python >= 3.5 and TensorFlow >= 2.3.0.

Community

Stay Up-to-Date

Twitter: You can also follow us on Twitter @autokeras for the latest news.

Emails: Subscribe our email list to receive announcements.

Questions and Discussions

GitHub Discussions: Ask your questions on our GitHub Discussions. It is a forum hosted on GitHub. We will monitor and answer the questions there.

Instant Communications

Slack: Request an invitation. Use the #autokeras channel for communication.

QQ Group: Join our QQ group 1150366085. Password: akqqgroup

Online Meetings: Join the online meeting Google group. The calendar event will appear on your Google Calendar.

Contributing Code

We engage in keeping everything about AutoKeras open to the public. Everyone can easily join as a developer. Here is how we manage our project.

  • Triage the issues: We pick the important issues to work on from GitHub issues. They will be added to this Project. Some of the issues will then be added to the milestones, which are used to plan for the releases.
  • Assign the tasks: We assign the tasks to people during the online meetings.
  • Discuss: We can have discussions in multiple places. The code reviews are on GitHub. Questions can be asked in Slack or during the meetings.

Please join our Slack and send Haifeng Jin a message. Or drop by our online meetings and talk to us. We will help you get started!

Refer to our Contributing Guide to learn the best practices.

Thank all the contributors!

Donation

We accept financial support on Open Collective. Thank every backer for supporting us!

Cite this work

Haifeng Jin, Qingquan Song, and Xia Hu. "Auto-keras: An efficient neural architecture search system." Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019. (Download)

Biblatex entry:

@inproceedings{jin2019auto,
  title={Auto-Keras: An Efficient Neural Architecture Search System},
  author={Jin, Haifeng and Song, Qingquan and Hu, Xia},
  booktitle={Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
  pages={1946--1956},
  year={2019},
  organization={ACM}
}

Acknowledgements

The authors gratefully acknowledge the D3M program of the Defense Advanced Research Projects Agency (DARPA) administered through AFRL contract FA8750-17-2-0116; the Texas A&M College of Engineering, and Texas A&M University.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autokeras-1.0.7.tar.gz (58.9 kB view details)

Uploaded Source

Built Distribution

autokeras-1.0.7-py3-none-any.whl (119.0 kB view details)

Uploaded Python 3

File details

Details for the file autokeras-1.0.7.tar.gz.

File metadata

  • Download URL: autokeras-1.0.7.tar.gz
  • Upload date:
  • Size: 58.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.11

File hashes

Hashes for autokeras-1.0.7.tar.gz
Algorithm Hash digest
SHA256 3afd5f998ad13f8f80ddef7947be31c02210944a2ee5dc535645d822ac58421d
MD5 c0f36e03e9ded0eb4dadbac9ea22a67e
BLAKE2b-256 33c5f6bf2b7b6018b471855ae35fd1df83f50e788e4c8163a5adf44670b54152

See more details on using hashes here.

File details

Details for the file autokeras-1.0.7-py3-none-any.whl.

File metadata

  • Download URL: autokeras-1.0.7-py3-none-any.whl
  • Upload date:
  • Size: 119.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.11

File hashes

Hashes for autokeras-1.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 1d7da95af2e40723f22ae2287f1e3ac0d5998718c991f2097529525cebba8bde
MD5 6c7e57442672e6423951ca3981a4eba2
BLAKE2b-256 060e34d503a83b352cdd8f6a482c07ab792f83fc630b8535361af6231c7bf9fb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page