Skip to main content

Autolabel is an image labeling tool using Neural Network

Project description

Autolabel

Autolabel is an image labeling tool. Currently images are labeled using ResNet18-152 implemented by pytorch. Autolabel can be used as a cli tool or as a library.

Installation

python setup.py install

Command line usage

See --help for a command overview

Usage: autolabel [OPTIONS] [IMAGES]...

Options:
  --batch-size INTEGER
  --sep TEXT                      Separator
  --top INTEGER
  -o, --output FILENAME           Output file
  -m, --model [resnet18|resnet34|resnet50|resnet101|resnet152]
  --help                          Show this message and exit.

In the simplest form this mean:

autolabel image.jpg

Autolabel supports reading file names from STDIN:

find /myimages -type f -iname '*.jpg' | autolabel

Library usage

from autolabel.image import ImageListDataset
from autolabel.classifier.resnet import Resnet18Classifier
from pathlib import Path

classifier = Resnet18Classifier()
images = [Path('/path/to/image.jpg'), Path('/path/to/another/image.png')]
dataset = ImageListDataset(images)
res = classifier.predict(dataset, top=top)
for p, decoded in res.items():
    print(p, decoded)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autolabel-0.0.1.tar.gz (21.8 kB view details)

Uploaded Source

Built Distributions

autolabel-0.0.1-py3.8.egg (83.7 kB view details)

Uploaded Source

autolabel-0.0.1-py3-none-any.whl (36.9 kB view details)

Uploaded Python 3

File details

Details for the file autolabel-0.0.1.tar.gz.

File metadata

  • Download URL: autolabel-0.0.1.tar.gz
  • Upload date:
  • Size: 21.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for autolabel-0.0.1.tar.gz
Algorithm Hash digest
SHA256 11d4cd7a5971cb67edb313d028a0f64400c1d3c4910fd97cfa220a79feb8814a
MD5 2f381d0f0c4693287d1eff3f2f7e3dec
BLAKE2b-256 1e4c5113573bd9534857700f80cd45af266eed98240cee739d121e0bb897e1a2

See more details on using hashes here.

File details

Details for the file autolabel-0.0.1-py3.8.egg.

File metadata

  • Download URL: autolabel-0.0.1-py3.8.egg
  • Upload date:
  • Size: 83.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for autolabel-0.0.1-py3.8.egg
Algorithm Hash digest
SHA256 ace3e3ede6a784034abb095ea09d5e260da26d635948aa3a52d1566c68e2d4c2
MD5 0c04a6c432966387b1a1da058f46bfea
BLAKE2b-256 327ff95ca71981a3e04bf2b89de49b76499223086c6f8a1f1ca1cdff7e8607b4

See more details on using hashes here.

File details

Details for the file autolabel-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: autolabel-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 36.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for autolabel-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 fd7306779ba0fd24aba560f5a0425efb0b11c959e271a366a15ee128c34f4c17
MD5 288788207506c2296b253ef56fa866f2
BLAKE2b-256 0d6da0fa34ad9ae24307ddfc54b99ff34ddae47dac365ce5cb6f04ef5fa09642

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page