Skip to main content

This is a python package useful for the automated logging and visulaization of metrics for machine learning tasks.

Project description

Update- 1. Given the option to use classification autologging for both small and large datasets.

2. The module can now work on regression datasets with negative values.

This project is about a python package for automated logging and visualization of metrics of classfication and regression algorithms in machine learning.

Features

  • The module covers both regression and classification tasks.
  • The module integrates a wide range of metrics related to classification and regression
  • The module can provide a barplot of the specified metrics from the specified subset of data
  • The module can provide the confusion matrix for all the different ML algorithms
  • The module can save automatically save the best model (highest validation accuracy for classification and lowest validation mse for regression)
  • The module can arrange the results table based on the user of the request
  • The module can provide the classification reports for all the different ML algorithms

Functions

  • Train and log for classification. All the classifiers are trained on the datasets and the results (accuracy, precision, recall, F1) are logged onto a dataframe which is displayed to the user. This function applies around 16 different classification algorithms as mentioned below:- 'svm-linear'

'svm-rbf'

'svm-poly'

'knn'

'naive bayes'

'decision tree'

'random forest'

'adaboost'

'gradient boost'

'xgboost'

'logistic regression'

'bagging classifier'

'extra tree classifier'

'linear discriminant analysis'

'quadratic discriminant analysis'

'cat boost classifier'

returns- best model and result table

  • Get confusion matrix. This function helps to get the confusion matrices for all the classification algorithms on the specified set (training/validation)

  • Get classification report. This function helps to get the classification reports for all the classification algorithms on the specified set (training/validation)

  • Sort table by metric. This function helps to arrange the result table as per the metric requested by the user.

  • Display metric plots. This function plots a barplot for the comparative analysis of the classication algorithms on the specified metric and on the specified subset.

  • Train and log for regression. All the regressors are trained on the datasets and the results (mae, mse, msle, median error, mape, max error) are logged onto a dataframe which is displayed to the user. This function applies around 13 different regression algorithms as mentioned below:- 'linear regression'

'sgd regression'

'ridge regression'

'elastic net'

'decision tree regression'

'random forest regression'

'adaboost regression'

'gradient boost regression'

'xgboost regression'

'bagging regression'

'hist gradient boosting regression'

'extra tree regression'

'cat boost regression'

Syntax

from AutoLogging_ML import AutoLogger

train_and_log_classification

a= AutoLogger.train_and_log_classification(x_train,x_test,y_train,y_test) print(a)

a stores the dataframe comprising of all the metric values for the training and validation datasets.

get_metric_plots_classification

AutoLogger.get_metric_plots_classification(a,subset='None',metric='None')

returns the barplot of all the algorithms on the mentioned metric and mentioned subset.

subset= 'training' , 'validation'

metric= 'accuracy' , 'precision', 'recall', 'f1', 'msle', 'median absolute error', 'maximum error'

get_confusion_matrix

AutoLogger.get_confusion_matrix(a,subset='None')

returns the confusion matrix of all the classification algorithms on the specified subset

subset= 'training'. 'validation'

get_clasification_report

AutoLogger.get_classification_report(a,subset='None')

returns the classification reports of all the classification algorithms on the specified subset

subset= 'training'. 'validation'

train_and_log_regression

b= AutoLogger.train_and_log_regression(x_train, x_test, y_train, y_test)

print(b)

b stores the dataframe comprising of all the metric values for the training and validation datasets.

get_metric_plots_regression

AutoLogger.get_metric_plots_regression(b,subset=None,metric=None)

returns the barplot of all the algorithms on the mentioned metric and mentioned subset.

subset= 'training' , 'validation'

metric= 'mae' , 'mse', 'mape', 'r2', 'msle', 'median absolute error', 'maximum error'

sort_table_by_metric

AutoLogger.sort_table_by_metric

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

AutoLogging_ML-1.2.4.tar.gz (10.6 kB view details)

Uploaded Source

Built Distribution

AutoLogging_ML-1.2.4-py3-none-any.whl (9.3 kB view details)

Uploaded Python 3

File details

Details for the file AutoLogging_ML-1.2.4.tar.gz.

File metadata

  • Download URL: AutoLogging_ML-1.2.4.tar.gz
  • Upload date:
  • Size: 10.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for AutoLogging_ML-1.2.4.tar.gz
Algorithm Hash digest
SHA256 510a0064c07120274300d326d69b526ab12c2b373a55751c0471c699a1fd85bc
MD5 6fa3c45ffc19e2d33d8388a7cd690781
BLAKE2b-256 7df5ba74232b86258afd6dceddb598dc75b1fee2827480cc4b8252fd5e15fe81

See more details on using hashes here.

File details

Details for the file AutoLogging_ML-1.2.4-py3-none-any.whl.

File metadata

File hashes

Hashes for AutoLogging_ML-1.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 5103b375f57fb45b1aef32b01cd3e5d5ad828a2eff778dc219a92209c170700c
MD5 a5d6983e2ce8d775329e3a2ada02fa6c
BLAKE2b-256 aa43bb45927b52495f455a2bf3d3561edcc0765089ccca020ee4c8d92141ae67

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page