Skip to main content

Distill the Automatic Speech Recognition (TensorFlow)

Project description

Automatic Speech Recognition

The project aim is to distill the Automatic Speech Recognition research. At the beginning, you can load a ready-to-use pipeline with a pre-trained model. Benefit from the eager TensorFlow 2.0 and freely monitor model weights, activations or gradients.

import automatic_speech_recognition as asr

file = 'to/test/sample.wav'  # sample rate 16 kHz, and 16 bit depth
sample = asr.utils.read_audio(file)
pipeline = asr.load('deepspeech2', lang='en')
pipeline.model.summary()     # TensorFlow model
sentences = pipeline.predict([sample])

We support english (thanks to Open Seq2Seq). The evaluation results of the English benchmark LibriSpeech dev-clean are in the table. To reference, the DeepSpeech (Mozilla) achieves around 7.5% WER, whereas the state-of-the-art (RWTH Aachen University) equals 2.3% WER (recent evaluation results can be found here). Both of them, use the external language model to boost results. By comparison, humans achieve 5.83% WER here (LibriSpeech dev-clean)

Model Name Decoder WER-dev
deepspeech2 greedy 6.71

Shortly it turns out that you need to adjust pipeline a little bit. Take a look at the CTC Pipeline. The pipeline is responsible for connecting a neural network model with all non-differential transformations (features extraction or prediction decoding). Pipeline components are independent. You can adjust them to your needs e.g. use more sophisticated feature extraction, different data augmentation, or add the language model decoder (static n-grams or huge transformers). You can do much more like distribute the training using the Strategy, or experiment with mixed precision policy.


import numpy as np
import tensorflow as tf
import automatic_speech_recognition as asr

dataset = asr.dataset.Audio.from_csv('train.csv', batch_size=32)
dev_dataset = asr.dataset.Audio.from_csv('dev.csv', batch_size=32)
alphabet = asr.text.Alphabet(lang='en')
features_extractor = asr.features.FilterBanks(
    features_num=160,
    winlen=0.02,
    winstep=0.01,
    winfunc=np.hanning
)
model = asr.model.get_deepspeech2(
    input_dim=160,
    output_dim=29,
    rnn_units=800,
    is_mixed_precision=False
)
optimizer = tf.optimizers.Adam(
    lr=1e-4,
    beta_1=0.9,
    beta_2=0.999,
    epsilon=1e-8
)
decoder = asr.decoder.GreedyDecoder()
pipeline = asr.pipeline.CTCPipeline(
    alphabet, features_extractor, model, optimizer, decoder
)
pipeline.fit(dataset, dev_dataset, epochs=25)
pipeline.save('/checkpoint')

test_dataset = asr.dataset.Audio.from_csv('test.csv')
wer, cer = asr.evaluate.calculate_error_rates(pipeline, test_dataset)
print(f'WER: {wer}   CER: {cer}')

Installation

You can use pip:

pip install automatic-speech-recognition

Otherwise clone the code and create a new environment via conda:

git clone https://github.com/rolczynski/Automatic-Speech-Recognition.git
conda env create -f=environment.yml     # or use: environment-gpu.yml
conda activate Automatic-Speech-Recognition

References

The fundamental repositories:

Moreover, you can explore the GitHub using key phrases like ASR, DeepSpeech, or Speech-To-Text. The list wer_are_we, an attempt at tracking states of the art, can be helpful too.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

automatic-speech-recognition-1.0.4.tar.gz (19.0 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file automatic-speech-recognition-1.0.4.tar.gz.

File metadata

  • Download URL: automatic-speech-recognition-1.0.4.tar.gz
  • Upload date:
  • Size: 19.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.7.5

File hashes

Hashes for automatic-speech-recognition-1.0.4.tar.gz
Algorithm Hash digest
SHA256 dc1ad8f638e64acf05270d4ae4861cb37e01179b21f38fe1b85aed592f94f228
MD5 d98ecc2af5bbdcf7d58518f8c3afc497
BLAKE2b-256 ae68deb54f4ee1fc18abffa74626073d29dfca62316edd15b3ba8515e706d568

See more details on using hashes here.

File details

Details for the file automatic_speech_recognition-1.0.4-py3-none-any.whl.

File metadata

  • Download URL: automatic_speech_recognition-1.0.4-py3-none-any.whl
  • Upload date:
  • Size: 40.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.7.5

File hashes

Hashes for automatic_speech_recognition-1.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 1ae91b8f9ab6d7a7f85d52cc6e1ebefce68af1b14cd010ff8aac4ab13408a5b2
MD5 5f0245e548307eccc2da681f4559d442
BLAKE2b-256 b215802b59c8c57299bc4827fddcff91b9ecee02a3830feaa3b70dd746760d73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page