State-of-the art Automated Machine Learning python library for Tabular Data
Project description
AutoML Alex
State-of-the art Automated Machine Learning python library for Tabular Data
Works with Tasks:
-
Binary Classification
-
Regression
-
Multiclass Classification (in progress...)
Benchmark Results
The bigger, the better
From AutoML-Benchmark
Scheme
Features
- Automated Data Clean (Auto Clean)
- Automated Feature Engineering (Auto FE)
- Smart Hyperparameter Optimization (HPO)
- Feature Generation
- Feature Selection
- Models Selection
- Cross Validation
- Optimization Timelimit and EarlyStoping
- Save and Load (Predict new data)
Installation
pip install automl-alex
Docs
🚀 Examples
Classifier:
from automl_alex import AutoMLClassifier
model = AutoMLClassifier()
model.fit(X_train, y_train, timeout=600)
predicts = model.predict(X_test)
Regression:
from automl_alex import AutoMLRegressor
model = AutoMLRegressor()
model.fit(X_train, y_train, timeout=600)
predicts = model.predict(X_test)
DataPrepare:
from automl_alex import DataPrepare
de = DataPrepare()
X_train = de.fit_transform(X_train)
X_test = de.transform(X_test)
Simple Models Wrapper:
from automl_alex import LightGBMClassifier
model = LightGBMClassifier()
model.fit(X_train, y_train)
predicts = model.predict_proba(X_test)
model.opt(X_train, y_train,
timeout=600, # optimization time in seconds,
)
predicts = model.predict_proba(X_test)
More examples in the folder ./examples:
- 01_Quick_Start.ipynb
- 02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb
- 03_Models.ipynb
- 04_ModelsReview.ipynb
- 05_BestSingleModel.ipynb
- Production Docker template
What's inside
It integrates many popular frameworks:
- scikit-learn
- XGBoost
- LightGBM
- CatBoost
- Optuna
- ...
Works with Features
-
Categorical Features
-
Numerical Features
-
Binary Features
-
Text
-
Datetime
-
Timeseries
-
Image
Note
- With a large dataset, a lot of memory is required! Library creates many new features. If you have a large dataset with a large number of features (more than 100), you may need a lot of memory.
Realtime Dashboard
Works with optuna-dashboard
Run
$ optuna-dashboard sqlite:///db.sqlite3
Road Map
-
Feature Generation
-
Save/Load and Predict on New Samples
-
Advanced Logging
-
Add opt Pruners
-
Docs Site
-
DL Encoders
-
Add More libs (NNs)
-
Multiclass Classification
-
Build pipelines
Contact
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file automl-alex-2023.3.11.tar.gz
.
File metadata
- Download URL: automl-alex-2023.3.11.tar.gz
- Upload date:
- Size: 32.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.14 CPython/3.10.9 Linux/5.4.0-104-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fbedbb3d32ee74dc472d10b75d583afbe351a1050255e4d978663724068cea78 |
|
MD5 | a46aa7ef5dab0b13f29e0febbc81d1af |
|
BLAKE2b-256 | 4ebe345d3d0a44e7ee8e9432c049a1b7663ecf84923f4babc4465b37d5a0f24c |
File details
Details for the file automl_alex-2023.3.11-py3-none-any.whl
.
File metadata
- Download URL: automl_alex-2023.3.11-py3-none-any.whl
- Upload date:
- Size: 38.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.14 CPython/3.10.9 Linux/5.4.0-104-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2a303a68b253389e05ee9616554c1bd09ba0d3b6a370ce132732547325b4257d |
|
MD5 | 9a4c625baba4293ca46c3a9b7c4106a0 |
|
BLAKE2b-256 | 789c0041fdcb8379640a765627eaccecf37365ce0bf61517e423ff7337b3d969 |