AutoML framework for implementing automated machine learning on data streams.
Project description
AutoML Streams
An AutoML framework for implementing automated machine learning on data streams architectures in production environments.
Installation
From pip
pip install -U automl-streams
or conda
:
conda install automl-streams
Usage
from skmultiflow.trees import HoeffdingTree
from skmultiflow.evaluation import EvaluatePrequential
from automlstreams.streams import KafkaStream
stream = KafkaStream(topic, bootstrap_servers=broker)
stream.prepare_for_use()
ht = HoeffdingTree()
evaluator = EvaluatePrequential(show_plot=True,
pretrain_size=200,
max_samples=3000)
evaluator.evaluate(stream=stream, model=[ht], model_names=['HT'])
More demonstrations available in the demos directory.
Development
Create and activate a virtualenv
for the project:
$ virtualenv .venv
$ source .venv/bin/activate
Install the development
dependencies:
$ pip install -e .
Install the app in "development" mode:
$ python setup.py develop
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
automl-streams-0.0.2.tar.gz
(22.2 kB
view details)
Built Distribution
File details
Details for the file automl-streams-0.0.2.tar.gz
.
File metadata
- Download URL: automl-streams-0.0.2.tar.gz
- Upload date:
- Size: 22.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 37eabe46fd6323b0671b9a001925032aeaebf99007eebc953c3cf823309e3039 |
|
MD5 | 248a026ef76a8e31eb57a7e13a87f34e |
|
BLAKE2b-256 | 2395698b8c424fbfa226a9e5cb22055d0c7f97fa7765a5adb5a18248a70b2253 |
File details
Details for the file automl_streams-0.0.2-py2.py3-none-any.whl
.
File metadata
- Download URL: automl_streams-0.0.2-py2.py3-none-any.whl
- Upload date:
- Size: 16.4 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b53235971317d87c9ce6a48df90c671dcfc38ec0d2f37e2280d3f4a9251aa552 |
|
MD5 | c3af7a120b14b718c9eae8aad07a8ccf |
|
BLAKE2b-256 | d0cd0123c117c886dab7fe6e95b29c62afb6222a8b7930bcc6c9882c4fc62e04 |