Skip to main content

AutoML framework for implementing automated machine learning on data streams.

Project description

AutoML Streams

An AutoML framework for implementing automated machine learning on data streams architectures in production environments.

Installation

From pip

pip install -U automl-streams

or conda:

conda install automl-streams

Usage

from skmultiflow.trees import HoeffdingTree
from skmultiflow.evaluation import EvaluatePrequential
from automlstreams.streams import KafkaStream

stream = KafkaStream(topic, bootstrap_servers=broker)
stream.prepare_for_use()
ht = HoeffdingTree()
evaluator = EvaluatePrequential(show_plot=True,
                                pretrain_size=200,
                                max_samples=3000)

evaluator.evaluate(stream=stream, model=[ht], model_names=['HT'])

More demonstrations available in the demos directory.

Development

Create and activate a virtualenv for the project:

$ virtualenv .venv
$ source .venv/bin/activate

Install the development dependencies:

$ pip install -e . 

Install the app in "development" mode:

$ python setup.py develop  

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

automl-streams-0.0.2.tar.gz (22.2 kB view details)

Uploaded Source

Built Distribution

automl_streams-0.0.2-py2.py3-none-any.whl (16.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file automl-streams-0.0.2.tar.gz.

File metadata

  • Download URL: automl-streams-0.0.2.tar.gz
  • Upload date:
  • Size: 22.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.4

File hashes

Hashes for automl-streams-0.0.2.tar.gz
Algorithm Hash digest
SHA256 37eabe46fd6323b0671b9a001925032aeaebf99007eebc953c3cf823309e3039
MD5 248a026ef76a8e31eb57a7e13a87f34e
BLAKE2b-256 2395698b8c424fbfa226a9e5cb22055d0c7f97fa7765a5adb5a18248a70b2253

See more details on using hashes here.

File details

Details for the file automl_streams-0.0.2-py2.py3-none-any.whl.

File metadata

  • Download URL: automl_streams-0.0.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 16.4 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.4

File hashes

Hashes for automl_streams-0.0.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 b53235971317d87c9ce6a48df90c671dcfc38ec0d2f37e2280d3f4a9251aa552
MD5 c3af7a120b14b718c9eae8aad07a8ccf
BLAKE2b-256 d0cd0123c117c886dab7fe6e95b29c62afb6222a8b7930bcc6c9882c4fc62e04

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page