Skip to main content

AutoML framework for implementing automated machine learning on data streams.

Project description

AutoML Streams

An AutoML framework for implementing automated machine learning on data streams architectures in production environments.


From pip

pip install -U automl-streams

or conda:

conda install automl-streams


from skmultiflow.trees import HoeffdingTree
from skmultiflow.evaluation import EvaluatePrequential
from automlstreams.streams import KafkaStream

stream = KafkaStream(topic, bootstrap_servers=broker)
ht = HoeffdingTree()
evaluator = EvaluatePrequential(show_plot=True,

evaluator.evaluate(stream=stream, model=[ht], model_names=['HT'])

More demonstrations available in the demos directory.


Create and activate a virtualenv for the project:

$ virtualenv .venv
$ source .venv/bin/activate

Install the development dependencies:

$ pip install -e . 

Install the app in "development" mode:

$ python develop  

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for automl-streams, version 0.0.2
Filename, size File type Python version Upload date Hashes
Filename, size automl_streams-0.0.2-py2.py3-none-any.whl (16.4 kB) File type Wheel Python version py2.py3 Upload date Hashes View
Filename, size automl-streams-0.0.2.tar.gz (22.2 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page