automl_tools
Project description
Automl_tools: automl binary classification
Automl_tools is a Python library that implements Gradient Boosting
Installation
The code is packaged for PyPI, so that the installation consists in running:
pip install automl-tools
Colab
Usage
Probabilistic binary example on the Boston housing dataset:
import pandas as pd
from automl_tools import automl_run
train = pd.read_csv("https://raw.githubusercontent.com/jonaqp/automl_tools/main/automl_tools/examples/train.csv?token=AAN2ZBDWF77QITK4ARSFIFDABUGAU")
test = pd.read_csv("https://raw.githubusercontent.com/jonaqp/automl_tools/main/automl_tools/examples/test.csv?token=AAN2ZBD6TMUC5XSGRTJNVPDABUGCO")
automl_run(train=train,
test=test,
id_col=None,
target_col="Survived",
imp_num="knn",
imp_cat="knn",
processing="binding",
mutual_information=False,
correlation_drop=False,
model_feature_selection=None,
model_run="LR",
augmentation=True,
Stratified=True,
cv=5)
Parameter
imp_num : "gaussian", "arbitrary", "median", "mean", "random", "knn"
imp_cat : "frequent", "constant", "rare", "knn"
processing: "woe", "binding"
Support Binary
model_feature_selection:
default: ["LR", "RF", "LGB"]
LR : LogisticRegression
RF : RandomForestClassifier
SVM : SVC
LS : LASSO
RD : RIDGE
NET : Elasticnet
DT : DecisionTreeClassifier
ET : ExtraTreesClassifier
GB : GradientBoostingClassifier
AB : AdaBoostClassifier
XGB : XGBClassifier
LGB : LGBMClassifier
CTB : CatBoostClassifier
NGB : NGBClassifier
model_run:
default: "LR"
LR : LogisticRegression
RF : RandomForestClassifier
SVM : SVC
LS : LASSO
RD : RIDGE
NET : Elasticnet
DT : DecisionTreeClassifier
ET : ExtraTreesClassifier
GB : GradientBoostingClassifier
AB : AdaBoostClassifier
XGB : XGBClassifier
LGB : LGBMClassifier
CTB : CatBoostClassifier
NGB : NGBClassifier
License
New features v1.0
- multi_class
- regression
- integrations GCP deploy model CI/CD
- integrations AWS deploy model CI/CD
BugFix
-
0.1.5
- fix imputer
- fix space hyperparameter
- update catboost test
-
0.1.4
- add parameter cv
- add confusion Matrix
- add comments readme.txt
-
0.1.3
- add parameter id_col
- add comments readme.txt
Reference
- Jonathan Quiza github.
- Jonathan Quiza RumiMLSpark.
- Jonathan Quiza linkedin.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
automl_tools-0.2.5.tar.gz
(19.8 kB
view details)
Built Distribution
File details
Details for the file automl_tools-0.2.5.tar.gz
.
File metadata
- Download URL: automl_tools-0.2.5.tar.gz
- Upload date:
- Size: 19.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7f54645012520deee3be53f9bd288976e672916d9403877b557fb5946fafeb6c |
|
MD5 | 0a0cbb42e17c450f75776f5aab78f325 |
|
BLAKE2b-256 | deb6c61ae704b8318452f5d97c2d39ae38af7835d63c53699f94695ef6835372 |
File details
Details for the file automl_tools-0.2.5-py3-none-any.whl
.
File metadata
- Download URL: automl_tools-0.2.5-py3-none-any.whl
- Upload date:
- Size: 24.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a7a548cf927ffff7705e7b2d359d2597b108f0ee88aac6bd01a02211be54687f |
|
MD5 | bf5ab0027cd95bb9e84d202046689aa1 |
|
BLAKE2b-256 | 6db879d97b0787334f5c32932fae3a9003235b6dd296d308522995dc3eeadb6d |