Skip to main content

automl_tools

Project description

Automl_tools: automl binary classification

Github License Updates Python 3 Code coverage

Automl_tools is a Python library that implements Gradient Boosting

Installation

The code is packaged for PyPI, so that the installation consists in running:

pip install automl-tools

Colab

Open In Colab

Usage

Probabilistic binary example on the Boston housing dataset:

import pandas as pd
from automl_tools import automl_run

train = pd.read_csv("https://raw.githubusercontent.com/jonaqp/automl_tools/main/automl_tools/examples/train.csv?token=AAN2ZBDWF77QITK4ARSFIFDABUGAU")
test = pd.read_csv("https://raw.githubusercontent.com/jonaqp/automl_tools/main/automl_tools/examples/test.csv?token=AAN2ZBD6TMUC5XSGRTJNVPDABUGCO")

automl_run(train=train,
           test=test,
           id_col=None, 
           target_col="Survived",
           imp_num="knn",
           imp_cat="knn",
           processing="binding",
           mutual_information=False,
           correlation_drop=False,
           model_feature_selection=None,
           model_run="LR",
           augmentation=True,
           Stratified=True,
           cv=5)

Parameter

imp_num : "gaussian", "arbitrary", "median", "mean", "random", "knn"
imp_cat : "frequent", "constant", "rare", "knn"
processing:  "woe", "binding" 

Support Binary

model_feature_selection: 
    default: ["LR", "RF", "LGB"]
        LR  : LogisticRegression
        RF  : RandomForestClassifier
        SVM : SVC
        LS  : LASSO
        RD  : RIDGE
        NET : Elasticnet
        DT  : DecisionTreeClassifier
        ET  : ExtraTreesClassifier
        GB  : GradientBoostingClassifier
        AB  : AdaBoostClassifier
        XGB  : XGBClassifier
        LGB  : LGBMClassifier
        CTB  : CatBoostClassifier
        NGB  : NGBClassifier

model_run:
    default: "LR"
        LR  : LogisticRegression
        RF  : RandomForestClassifier
        SVM : SVC
        LS  : LASSO
        RD  : RIDGE
        NET : Elasticnet
        DT  : DecisionTreeClassifier
        ET  : ExtraTreesClassifier
        GB  : GradientBoostingClassifier
        AB  : AdaBoostClassifier
        XGB  : XGBClassifier
        LGB  : LGBMClassifier
        CTB  : CatBoostClassifier
        NGB  : NGBClassifier

License

Apache License 2.0.

New features v1.0

  • multi_class
  • regression
  • integrations GCP deploy model CI/CD
  • integrations AWS deploy model CI/CD

BugFix

  • 0.1.5

    • fix imputer
    • fix space hyperparameter
    • update catboost test
  • 0.1.4

    • add parameter cv
    • add confusion Matrix
    • add comments readme.txt
  • 0.1.3

    • add parameter id_col
    • add comments readme.txt

Reference

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

automl_tools-0.2.5.tar.gz (19.8 kB view details)

Uploaded Source

Built Distribution

automl_tools-0.2.5-py3-none-any.whl (24.5 kB view details)

Uploaded Python 3

File details

Details for the file automl_tools-0.2.5.tar.gz.

File metadata

  • Download URL: automl_tools-0.2.5.tar.gz
  • Upload date:
  • Size: 19.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.1

File hashes

Hashes for automl_tools-0.2.5.tar.gz
Algorithm Hash digest
SHA256 7f54645012520deee3be53f9bd288976e672916d9403877b557fb5946fafeb6c
MD5 0a0cbb42e17c450f75776f5aab78f325
BLAKE2b-256 deb6c61ae704b8318452f5d97c2d39ae38af7835d63c53699f94695ef6835372

See more details on using hashes here.

File details

Details for the file automl_tools-0.2.5-py3-none-any.whl.

File metadata

File hashes

Hashes for automl_tools-0.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 a7a548cf927ffff7705e7b2d359d2597b108f0ee88aac6bd01a02211be54687f
MD5 bf5ab0027cd95bb9e84d202046689aa1
BLAKE2b-256 6db879d97b0787334f5c32932fae3a9003235b6dd296d308522995dc3eeadb6d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page