automl_tools
Project description
Automl_tools: automl binary classification
Automl_tools is a Python library that implements Gradient Boosting
Installation
The code is packaged for PyPI, so that the installation consists in running:
pip install automl-tools
Colab
Usage
Probabilistic binary example on the Boston housing dataset:
import pandas as pd
from automl_tools import automl_run
train = pd.read_csv("https://raw.githubusercontent.com/jonaqp/automl_tools/main/automl_tools/examples/train.csv?token=AAN2ZBDWF77QITK4ARSFIFDABUGAU")
test = pd.read_csv("https://raw.githubusercontent.com/jonaqp/automl_tools/main/automl_tools/examples/test.csv?token=AAN2ZBD6TMUC5XSGRTJNVPDABUGCO")
automl_run(train=train,
test=test,
id_col=None,
target_col="Survived",
imp_num="knn",
imp_cat="knn",
processing="binding",
mutual_information=False,
correlation_drop=False,
model_feature_selection=None,
model_run="LR",
augmentation=True,
Stratified=True,
cv=5)
Parameter
imp_num : "gaussian", "arbitrary", "median", "mean", "random", "knn"
imp_cat : "frequent", "constant", "rare", "knn"
processing: "woe", "binding"
Support Binary
model_feature_selection:
default: ["LR", "RF", "LGB"]
LR : LogisticRegression
RF : RandomForestClassifier
SVM : SVC
LS : LASSO
RD : RIDGE
NET : Elasticnet
DT : DecisionTreeClassifier
ET : ExtraTreesClassifier
GB : GradientBoostingClassifier
AB : AdaBoostClassifier
XGB : XGBClassifier
LGB : LGBMClassifier
CTB : CatBoostClassifier
NGB : NGBClassifier
model_run:
default: "LR"
LR : LogisticRegression
RF : RandomForestClassifier
SVM : SVC
LS : LASSO
RD : RIDGE
NET : Elasticnet
DT : DecisionTreeClassifier
ET : ExtraTreesClassifier
GB : GradientBoostingClassifier
AB : AdaBoostClassifier
XGB : XGBClassifier
LGB : LGBMClassifier
CTB : CatBoostClassifier
NGB : NGBClassifier
License
New features v1.0
- multi_class
- regression
- integrations GCP deploy model CI/CD
- integrations AWS deploy model CI/CD
BugFix
-
0.1.5
- fix imputer
- fix space hyperparameter
- update catboost test
-
0.1.4
- add parameter cv
- add confusion Matrix
- add comments readme.txt
-
0.1.3
- add parameter id_col
- add comments readme.txt
Reference
- Jonathan Quiza github.
- Jonathan Quiza RumiMLSpark.
- Jonathan Quiza linkedin.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
automl_tools-0.1.6.tar.gz
(19.1 kB
view hashes)
Built Distribution
Close
Hashes for automl_tools-0.1.6-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 46ba0cec6e640bc4fe58eb033cb12d4087ffec63572fa2121160dda4c8147204 |
|
MD5 | 01066841f183ca8220f79800979853cf |
|
BLAKE2b-256 | 770a7af14a28a5efa1e08c29210d2cc790a4d311ab50a343623f871a0d7c57e4 |