Auto machine learning, deep learning library in Python.
Project description
automlkiller
Automated Machine Learning
Usage
- Step 1: Load data and Preprocessing
model = AUTOML(X, y,
cleancolumnname = {},
datatype = {"categorical_columns": [], "numeric_columns":[], "time_columns":[]},
simpleimputer = {"numeric_strategy": "mean", "categorical_strategy": "most_frequent"},
zeronearzerovariance = {"threshold_first" : 0.1, "threshold_second": 20},
categoryencoder = {"cols": [], "method": "targetencoder"},
groupsimilarfeature = {"group_name": [], "list_of_group_feature": []},
binning = {"features_to_discretize": []},
maketimefeature = {"time_columns": [], "list_of_feature": ['month', 'dayofweek', 'weekday', 'is_month_end', 'is_month_start', 'hour']},
scaling = {"method": "zscore", "numeric_columns": []},
# outlier = {"methods": ["pca", "iforest", "knn"], "contamination": 0.2},
removeperfectmulticollinearity = {},
makenonlinearfeature = {"polynomial_columns": [], "degree": 2, "interaction_only": False, "include_bias": False, "other_nonlinear_feature": ["sin", "cos", "tan"]},
# rfe = {"estimator": None, "step": 1, "min_features_to_select": 3, "cv": 3},
# reducedimension = {"method": "pca_linear", "n_components": 0.99}
)
- Step 2: Training Model
model.create_model(estimator=['classification-lgbmclassifier',
# 'classification-kneighborsclassifier',
'classification-logisticregression',
# 'classification-xgbclassifier',
# 'classification-catboostclassifier',
# 'classification-randomforestclassifier'
],
verbose = True,
n_jobs = 2,
cv = 2,
estimator_params = {
'classification-lgbmclassifier': {'n_jobs': 8},
},
scoring = ['accuracy', 'roc_auc', 'recall', 'precision', 'f1']
)
model.ensemble_model(scoring = ['accuracy'])
model.voting_model(scoring = ['accuracy'])
model.stacking_model(scoring = ['accuracy'])
- Step 3: Model Performance
model.report_tensorboard()
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
automlkiller-0.0.29.tar.gz
(36.2 kB
view details)
Built Distribution
File details
Details for the file automlkiller-0.0.29.tar.gz
.
File metadata
- Download URL: automlkiller-0.0.29.tar.gz
- Upload date:
- Size: 36.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8ea53394925a149464f442e799b6a2be4a4a7ed4d398f347185c38aa237323d1 |
|
MD5 | a05f334254ace5de5f7ca39f79a453d6 |
|
BLAKE2b-256 | e84d6bf0c0e6d71e8df72cbbf4b29270271908cfe8967829d24179bd01eae047 |
File details
Details for the file automlkiller-0.0.29-py3-none-any.whl
.
File metadata
- Download URL: automlkiller-0.0.29-py3-none-any.whl
- Upload date:
- Size: 83.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f98e405c37b2b010a25cc91243fb3ec1d2c742e6df434fbb0a693db484833929 |
|
MD5 | bfa455b8cc0a7646df1643c4322adf7e |
|
BLAKE2b-256 | e5712e3aa2b19f879135ad063d6c7486268cce5c6a57e839a83d6f01cc684d7d |