Skip to main content

HuggingFace/AutoNLP

Project description

🤗 AutoNLP

AutoNLP: faster and easier training and deployments of SOTA NLP models

Installation

You can Install AutoNLP python package via PIP. Please note you will need python >= 3.7 for AutoNLP to work properly.

pip install autonlp

Please make sure that you have git lfs installed. Check out the instructions here: https://github.com/git-lfs/git-lfs/wiki/Installation

Quick start - in the terminal

Supported languages:

  • English: en
  • French: fr
  • German: de
  • Finnish: fi
  • Hindi: hi
  • Spanish: es
  • Chinese: zh
  • Dutch: nl
  • Turkish: tr

Supported tasks:

  • binary_classification
  • multi_class_classification
  • entity_extraction

Note: AutoNLP is currently in beta release. To participate in the beta, just go to https://huggingface.co/autonlp and apply 🤗

First, create a project:

autonlp login --api-key YOUR_HUGGING_FACE_API_TOKEN
autonlp create_project --name sentiment_detection --language en --task binary_classification

Upload files and start the training. You need a training and a validation split. Only CSV files are supported at the moment.

# Train split
autonlp upload --project sentiment_detection --split train \
               --col_mapping review:text,sentiment:target \
               --files ~/datasets/train.csv
# Validation split
autonlp upload --project sentiment_detection --split valid \
               --col_mapping review:text,sentiment:target \
               --files ~/datasets/valid.csv

Once the files are uploaded, you can start training the model:

autonlp train --project sentiment_detection

Monitor the progress of your project.

# Project progress
autonlp project_info --name sentiment_detection
# Model metrics
autonlp metrics --project PROJECT_ID

Quick start - Python API

Setting up:

from autonlp import AutoNLP
client = AutoNLP()
client.login(token="YOUR_HUGGING_FACE_API_TOKEN")

Creating a project and uploading files to it:

project = client.create_project(name="sentiment_detection", task="binary_classification", language="en")
project.upload(
    filepaths=["/path/to/train.csv"],
    split="train",
    col_mapping={
        "review": "text",
        "sentiment": "target",
    })

# also upload a validation with split="valid"

Start the training of your models:

project.train()

To monitor the progress of your training:

project.refresh()
print(project)

After the training of your models has succeeded, you can retrieve the metrics for each model and test them with the 🤗 Inference API:

client.predict(project="sentiment_detection", model_id=42, input_text="i love autonlp")

or use command line:

autonlp predict --project sentiment_detection --model_id 42 --sentence "i love autonlp"

How much do I have to pay?

It's difficult to provide an exact answer to this question, however, we have an estimator that might help you. Just enter the number of samples and language and you will get an estimate. Please keep in mind that this is just an estimate and can easily over-estimate or under-estimate (we are actively working on this).

autonlp estimate --num_train_samples 500000 --language en

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autonlp-0.2.1.tar.gz (25.3 kB view details)

Uploaded Source

Built Distribution

autonlp-0.2.1-py3-none-any.whl (30.9 kB view details)

Uploaded Python 3

File details

Details for the file autonlp-0.2.1.tar.gz.

File metadata

  • Download URL: autonlp-0.2.1.tar.gz
  • Upload date:
  • Size: 25.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.0.0.post20201207 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for autonlp-0.2.1.tar.gz
Algorithm Hash digest
SHA256 c488dfe1063f5932dbc9b29eeaea3dd5d726a146f6a2423493424a00094f8c68
MD5 5c87b80e3cdb7a1d4487334825f63ee6
BLAKE2b-256 c61d8730867ed33eee6da269d56b0654c4a06d4343adc626b6f13dfad29fc17b

See more details on using hashes here.

File details

Details for the file autonlp-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: autonlp-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 30.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.0.0.post20201207 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for autonlp-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 74994781737d87f1d56a62fae4cc2894e24376b2b4e048e131add5d51d14af43
MD5 809df95c7855ab2109ec18947d8abb45
BLAKE2b-256 8b84d61d999cb3e79cd1828355a93071f894b16a3ea337cc2c2b54f664c8c1cc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page