https://github.com/zasdfgbnm/autonvtx
Project description
Install
pip install autonvtx
Usage
Write your model as usual and autonvtx(model)
to your model:
import torch import autonvtx class Model(torch.nn.Module): def __init__(self): super().__init__() self.layer1 = torch.nn.Linear(5, 5) self.layer2 = torch.nn.Linear(5, 5) def forward(self, x): x = self.layer1(x) x = self.layer2(x) return x m = Model().cuda() autonvtx(m) input_ = torch.randn(1024, 5, device='cuda') torch.cuda.profiler.start() for _ in range(10): output = m(input_) torch.cuda.profiler.stop()
The screenshot for this would be:
It also works with existing models:
import torch import torchvision import autonvtx m = torchvision.models.resnet50() autonvtx(m) input_ = torch.randn(10, 3, 224, 224) torch.cuda.profiler.start() for _ in range(10): output = m(input_) torch.cuda.profiler.stop()
The screenshot for this would be:
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Filename, size | File type | Python version | Upload date | Hashes |
---|---|---|---|---|
Filename, size autonvtx-0.1.linux-x86_64.tar.gz (2.0 kB) | File type Source | Python version None | Upload date | Hashes View |
Filename, size autonvtx-0.1-py3-none-any.whl (2.7 kB) | File type Wheel | Python version py3 | Upload date | Hashes View |
Close
Hashes for autonvtx-0.1.linux-x86_64.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 25ae971a23af60f75a3eaea056434c4b7c5733124a1b2f7c6704a8dd12547e9d |
|
MD5 | 01b8c8b24c93e1fbd282606ae5bbf51b |
|
BLAKE2-256 | 5db4b176868ee80b2c47c9e4f58ffa26b764d33d74755ffebb55f237c987e23a |