Skip to main content

A package for automating machine learning tasks

Project description

Autopilotml

Automated machine learning library for analytics

Installation

  • pip install autopilotml

Usage

Load data

from autopilotml import load_data, load_database

# For csv files
df = load_data(path = "dataset/titanic_train.csv", csv=True, **kwargs)

# For excel notebook
df = load_data(path = "dataset/titanic_train.xlsx", excel=True, **kwargs)

# To Load data from Database

# This framework supports sqlite, 'mysql', 'postgres', 'MongoDB'
df = load_database(database_type='sqlite', sqlite_db_path = 'database.db', query='select * from employee_table')

Data Preprocessing

from autopilotml import preprocessing

# If changing any values in the dictionary, whole dictionary has to be provided.

df = preprocessing(dataframe=df, label_column='Survived',
                                missing={
                                    'type':'impute',
                                    'drop_columns': False, 
                                    'threshold': 0.25, 
                                    'strategy_numerical': 'knn',
                                    'strategy_categorical': 'most_frequent',
                                    'fill_value': None},
                                outlier={
                                    'method': 'None',
                                    'zscore_threshold': 3,
                                    'iqr_threshold': 1.5,
                                    'Lc': 0.05, 
                                    'Uc': 0.95,
                                    'cap': False})

Data Transformation

from autopilotml import transformation

# If the target_transform is true, then the function  return 3 objects, (e.g) dataframe, feature encoder and target encoder
# else it will return 2 objects dataframe and feature encoder
df, encoder = transformation(dataframe=df,
                                label_column='Survived', 
                                type = 'ordinal',
                                target_transform = False, 
                                cardinality = True, 
                                Cardinality_threshold = 0.3)

Scaling

# Here if target_scaling = True only applicable for regression then it will return 3 objects dataframe, feature scaler and target scaler

from autopilotml import scaling

df, scaler = scaling(df, label_column= 'Survived', type = 'standard', target_scaling = False)

Feature Selecction

from autopilotml import feature_selection

df, selector = feature_selection(dataframe=df, label_column='Survived', 
                                estimator='RandomForestClassifier',           
                                type='rfe', max_features=10, 
                                min_features=2, scoring= 'accuracy', 
                                cv=5)

Model Training

from autopilotml import training

model = training(dataframe=df, label_column='Survived', model_name='SVC', problem_type='Classification', 
                target_scaler=None, test_split =0.15, hypertune=True, n_epochs=100)

MLFlow - Track the Model Training and model Parameters

!mlflow ui

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autopilotml-1.0.10.tar.gz (202.8 kB view details)

Uploaded Source

Built Distribution

autopilotml-1.0.10-py3-none-any.whl (208.2 kB view details)

Uploaded Python 3

File details

Details for the file autopilotml-1.0.10.tar.gz.

File metadata

  • Download URL: autopilotml-1.0.10.tar.gz
  • Upload date:
  • Size: 202.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for autopilotml-1.0.10.tar.gz
Algorithm Hash digest
SHA256 a283448ac9999bf794ddd26bac01a1217b7018409a60d635f74ae36c07765d30
MD5 9b5777375d4b05bab07011da50e88642
BLAKE2b-256 3c1db6b0442d274c5e51d3692aba58873a1cca90039ef1a5a35a44d7001a5840

See more details on using hashes here.

File details

Details for the file autopilotml-1.0.10-py3-none-any.whl.

File metadata

  • Download URL: autopilotml-1.0.10-py3-none-any.whl
  • Upload date:
  • Size: 208.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for autopilotml-1.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 7f277b22ee90d3e3938733e5a1fb4401b7c19e047b20540095e09ac9036ce9a3
MD5 b2fc6fb1785ca5ac1285722bd85e7e00
BLAKE2b-256 bfec45ae438d2a7895553acae741bbc8875cf5a8e19d1d5e14612bfcc2adc3bd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page