A package for automating machine learning tasks
Project description
Autopilotml
Automated machine learning library for analytics
Installation
pip install autopilotml
Usage
Load data
from autopilotml import load_data, load_database
# For csv files
df = load_data(path = "dataset/titanic_train.csv", csv=True, **kwargs)
# For excel notebook
df = load_data(path = "dataset/titanic_train.xlsx", excel=True, **kwargs)
# To Load data from Database
# This framework supports sqlite, 'mysql', 'postgres', 'MongoDB'
df = load_database(database_type='sqlite', sqlite_db_path = 'database.db', query='select * from employee_table')
Data Preprocessing
from autopilotml import preprocessing
# If changing any values in the dictionary, whole dictionary has to be provided.
df = preprocessing(dataframe=df, label_column='Survived',
missing={
'type':'impute',
'drop_columns': False,
'threshold': 0.25,
'strategy_numerical': 'knn',
'strategy_categorical': 'most_frequent',
'fill_value': None},
outlier={
'method': 'None',
'zscore_threshold': 3,
'iqr_threshold': 1.5,
'Lc': 0.05,
'Uc': 0.95,
'cap': False})
Data Transformation
from autopilotml import transformation
# If the target_transform is true, then the function return 3 objects, (e.g) dataframe, feature encoder and target encoder
# else it will return 2 objects dataframe and feature encoder
df, encoder = transformation(dataframe=df,
label_column='Survived',
type = 'ordinal',
target_transform = False,
cardinality = True,
Cardinality_threshold = 0.3)
Scaling
# Here if target_scaling = True only applicable for regression then it will return 3 objects dataframe, feature scaler and target scaler
from autopilotml import scaling
df, scaler = scaling(df, label_column= 'Survived', type = 'standard', target_scaling = False)
Feature Selecction
from autopilotml import feature_selection
df, selector = feature_selection(dataframe=df, label_column='Survived',
estimator='RandomForestClassifier',
type='rfe', max_features=10,
min_features=2, scoring= 'accuracy',
cv=5)
Model Training
from autopilotml import training
model = training(dataframe=df, label_column='Survived', model_name='SVC', problem_type='Classification',
target_scaler=None, test_split =0.15, hypertune=True, n_epochs=100)
MLFlow - Track the Model Training and model Parameters
!mlflow ui
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
autopilotml-1.0.10.tar.gz
(202.8 kB
view details)
Built Distribution
autopilotml-1.0.10-py3-none-any.whl
(208.2 kB
view details)
File details
Details for the file autopilotml-1.0.10.tar.gz
.
File metadata
- Download URL: autopilotml-1.0.10.tar.gz
- Upload date:
- Size: 202.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a283448ac9999bf794ddd26bac01a1217b7018409a60d635f74ae36c07765d30 |
|
MD5 | 9b5777375d4b05bab07011da50e88642 |
|
BLAKE2b-256 | 3c1db6b0442d274c5e51d3692aba58873a1cca90039ef1a5a35a44d7001a5840 |
File details
Details for the file autopilotml-1.0.10-py3-none-any.whl
.
File metadata
- Download URL: autopilotml-1.0.10-py3-none-any.whl
- Upload date:
- Size: 208.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7f277b22ee90d3e3938733e5a1fb4401b7c19e047b20540095e09ac9036ce9a3 |
|
MD5 | b2fc6fb1785ca5ac1285722bd85e7e00 |
|
BLAKE2b-256 | bfec45ae438d2a7895553acae741bbc8875cf5a8e19d1d5e14612bfcc2adc3bd |