Skip to main content

A package for automating machine learning tasks

Project description

Autopilotml

Automated machine learning library for analytics

Installation

  • pip install autopilotml

Usage

Load data

from autopilotml import load_data, load_database

# For csv files
df = load_data(path = "dataset/titanic_train.csv", csv=True, **kwargs)

# For excel notebook
df = load_data(path = "dataset/titanic_train.xlsx", excel=True, **kwargs)

# To Load data from Database

# This framework supports sqlite, 'mysql', 'postgres', 'MongoDB'
df = load_database(database_type='sqlite', sqlite_db_path = 'database.db', query='select * from employee_table')

Data Preprocessing

from autopilotml import preprocessing

# If changing any values in the dictionary, whole dictionary has to be provided.

df = preprocessing(dataframe=df, label_column='Survived',
                                missing={
                                    'type':'impute',
                                    'drop_columns': False, 
                                    'threshold': 0.25, 
                                    'strategy_numerical': 'knn',
                                    'strategy_categorical': 'most_frequent',
                                    'fill_value': None},
                                outlier={
                                    'method': 'None',
                                    'zscore_threshold': 3,
                                    'iqr_threshold': 1.5,
                                    'Lc': 0.05, 
                                    'Uc': 0.95,
                                    'cap': False})

Data Transformation

from autopilotml import transformation

# If the target_transform is true, then the function  return 3 objects, (e.g) dataframe, feature encoder and target encoder
# else it will return 2 objects dataframe and feature encoder
df, encoder = transformation(dataframe=df,
                                label_column='Survived', 
                                type = 'ordinal',
                                target_transform = False, 
                                cardinality = True, 
                                Cardinality_threshold = 0.3)

Scaling

# Here if target_scaling = True only applicable for regression then it will return 3 objects dataframe, feature scaler and target scaler

from autopilotml import scaling

df, scaler = scaling(df, label_column= 'Survived', type = 'standard', target_scaling = False)

Feature Selecction

from autopilotml import feature_selection

df, selector = feature_selection(dataframe=df, label_column='Survived', 
                                estimator='RandomForestClassifier',           
                                type='rfe', max_features=10, 
                                min_features=2, scoring= 'accuracy', 
                                cv=5)

Model Training

from autopilotml import training

model = training(dataframe=df, label_column='Survived', model_name='SVC', problem_type='Classification', 
                target_scaler=None, test_split =0.15, hypertune=True, n_epochs=100)

MLFlow - Track the Model Training and model Parameters

!mlflow ui

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autopilotml-1.0.12.tar.gz (202.8 kB view details)

Uploaded Source

Built Distribution

autopilotml-1.0.12-py3-none-any.whl (208.2 kB view details)

Uploaded Python 3

File details

Details for the file autopilotml-1.0.12.tar.gz.

File metadata

  • Download URL: autopilotml-1.0.12.tar.gz
  • Upload date:
  • Size: 202.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for autopilotml-1.0.12.tar.gz
Algorithm Hash digest
SHA256 4fb800e2bf7ee79bc4c31dbbdf4ec1998f830a25719681c24613d8725683bebe
MD5 3aaf2e92532981ca7e86930e40503581
BLAKE2b-256 9fdb99f0e6312ffec5431e0aa25a8f4c757eedf54af3ca821cfb64c960bba6f2

See more details on using hashes here.

File details

Details for the file autopilotml-1.0.12-py3-none-any.whl.

File metadata

  • Download URL: autopilotml-1.0.12-py3-none-any.whl
  • Upload date:
  • Size: 208.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for autopilotml-1.0.12-py3-none-any.whl
Algorithm Hash digest
SHA256 a6fee9563b6d978a458be6852fcf0d7f29cc05d92876eb74ed2f93cafa417b86
MD5 8e0b587f66253863ea4033bac3f325ad
BLAKE2b-256 b4b1aa6070266f052be5bd9a67219f1a2cdf0afeaf80481e6c6f8cd76c230a3c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page