A package for automating machine learning tasks
Project description
Autopilotml
Automated machine learning library for analytics
Installation
pip install autopilotml
Usage
Load data
from autopilotml import load_data, load_database
# For csv files
df = load_data(path = "dataset/titanic_train.csv", csv=True, **kwargs)
# For excel notebook
df = load_data(path = "dataset/titanic_train.xlsx", excel=True, **kwargs)
# To Load data from Database
# This framework supports sqlite, 'mysql', 'postgres', 'MongoDB'
df = load_database(database_type='sqlite', sqlite_db_path = 'database.db', query='select * from employee_table')
Data Preprocessing
from autopilotml import preprocessing
# If changing any values in the dictionary, whole dictionary has to be provided.
df = preprocessing(dataframe=df, label_column='Survived',
missing={
'type':'impute',
'drop_columns': False,
'threshold': 0.25,
'strategy_numerical': 'knn',
'strategy_categorical': 'most_frequent',
'fill_value': None},
outlier={
'method': 'None',
'zscore_threshold': 3,
'iqr_threshold': 1.5,
'Lc': 0.05,
'Uc': 0.95,
'cap': False})
Data Transformation
from autopilotml import transformation
# If the target_transform is true, then the function return 3 objects, (e.g) dataframe, feature encoder and target encoder
# else it will return 2 objects dataframe and feature encoder
df, encoder = transformation(dataframe=df,
label_column='Survived',
type = 'ordinal',
target_transform = False,
cardinality = True,
Cardinality_threshold = 0.3)
Scaling
# Here if target_scaling = True only applicable for regression then it will return 3 objects dataframe, feature scaler and target scaler
from autopilotml import scaling
df, scaler = scaling(df, label_column= 'Survived', type = 'standard', target_scaling = False)
Feature Selecction
from autopilotml import feature_selection
df, selector = feature_selection(dataframe=df, label_column='Survived',
estimator='RandomForestClassifier',
type='rfe', max_features=10,
min_features=2, scoring= 'accuracy',
cv=5)
Model Training
from autopilotml import training
model = training(dataframe=df, label_column='Survived', model_name='SVC', problem_type='Classification',
target_scaler=None, test_split =0.15, hypertune=True, n_epochs=100)
MLFlow - Track the Model Training and model Parameters
!mlflow ui
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
autopilotml-1.0.13.tar.gz
(202.8 kB
view details)
Built Distribution
autopilotml-1.0.13-py3-none-any.whl
(208.2 kB
view details)
File details
Details for the file autopilotml-1.0.13.tar.gz
.
File metadata
- Download URL: autopilotml-1.0.13.tar.gz
- Upload date:
- Size: 202.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 95e8d49c5ed81fc19b8040f85009b5ec85248853f73cbca3dd675284769d93e3 |
|
MD5 | 2fff0239ee9a022a6afde4f467acc63a |
|
BLAKE2b-256 | 8aa66842868987a6467d8e09700627939446869596c0323a4056830bcd88a73b |
File details
Details for the file autopilotml-1.0.13-py3-none-any.whl
.
File metadata
- Download URL: autopilotml-1.0.13-py3-none-any.whl
- Upload date:
- Size: 208.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e59a042f9e5415517d1cd960cfbb267b59b4e359178ab239e57f6a812b11b546 |
|
MD5 | 9caed1c4734c9f97a144559c331f9e0a |
|
BLAKE2b-256 | 2c10c95b6c70310bf8134afdea95b26e13e98caa8404ed092f3e08649de7052e |