Skip to main content

A package for automating machine learning tasks

Project description

Autopilotml

Automated machine learning library for analytics

Installation

  • pip install autopilotml

Usage

Load data

from autopilotml import load_data, load_database

# For csv files
df = load_data(path = "dataset/titanic_train.csv", csv=True, **kwargs)

# For excel notebook
df = load_data(path = "dataset/titanic_train.xlsx", excel=True, **kwargs)

# To Load data from Database

# This framework supports sqlite, 'mysql', 'postgres', 'MongoDB'
df = load_database(database_type='sqlite', sqlite_db_path = 'database.db', query='select * from employee_table')

Data Preprocessing

from autopilotml import preprocessing

# If changing any values in the dictionary, whole dictionary has to be provided.

df = preprocessing(dataframe=df, label_column='Survived',
                                missing={
                                    'type':'impute',
                                    'drop_columns': False, 
                                    'threshold': 0.25, 
                                    'strategy_numerical': 'knn',
                                    'strategy_categorical': 'most_frequent',
                                    'fill_value': None},
                                outlier={
                                    'method': 'None',
                                    'zscore_threshold': 3,
                                    'iqr_threshold': 1.5,
                                    'Lc': 0.05, 
                                    'Uc': 0.95,
                                    'cap': False})

Data Transformation

from autopilotml import transformation

# If the target_transform is true, then the function  return 3 objects, (e.g) dataframe, feature encoder and target encoder
# else it will return 2 objects dataframe and feature encoder
df, encoder = transformation(dataframe=df,
                                label_column='Survived', 
                                type = 'ordinal',
                                target_transform = False, 
                                cardinality = True, 
                                Cardinality_threshold = 0.3)

Scaling

# Here if target_scaling = True only applicable for regression then it will return 3 objects dataframe, feature scaler and target scaler

from autopilotml import scaling

df, scaler = scaling(df, label_column= 'Survived', type = 'standard', target_scaling = False)

Feature Selecction

from autopilotml import feature_selection

df, selector = feature_selection(dataframe=df, label_column='Survived', 
                                estimator='RandomForestClassifier',           
                                type='rfe', max_features=10, 
                                min_features=2, scoring= 'accuracy', 
                                cv=5)

Model Training

from autopilotml import training

model = training(dataframe=df, label_column='Survived', model_name='SVC', problem_type='Classification', 
                target_scaler=None, test_split =0.15, hypertune=True, n_epochs=100)

MLFlow - Track the Model Training and model Parameters

!mlflow ui

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autopilotml-1.0.13.tar.gz (202.8 kB view details)

Uploaded Source

Built Distribution

autopilotml-1.0.13-py3-none-any.whl (208.2 kB view details)

Uploaded Python 3

File details

Details for the file autopilotml-1.0.13.tar.gz.

File metadata

  • Download URL: autopilotml-1.0.13.tar.gz
  • Upload date:
  • Size: 202.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for autopilotml-1.0.13.tar.gz
Algorithm Hash digest
SHA256 95e8d49c5ed81fc19b8040f85009b5ec85248853f73cbca3dd675284769d93e3
MD5 2fff0239ee9a022a6afde4f467acc63a
BLAKE2b-256 8aa66842868987a6467d8e09700627939446869596c0323a4056830bcd88a73b

See more details on using hashes here.

File details

Details for the file autopilotml-1.0.13-py3-none-any.whl.

File metadata

  • Download URL: autopilotml-1.0.13-py3-none-any.whl
  • Upload date:
  • Size: 208.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for autopilotml-1.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 e59a042f9e5415517d1cd960cfbb267b59b4e359178ab239e57f6a812b11b546
MD5 9caed1c4734c9f97a144559c331f9e0a
BLAKE2b-256 2c10c95b6c70310bf8134afdea95b26e13e98caa8404ed092f3e08649de7052e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page