Skip to main content

Automate PsychoPy experiments

Project description

Automating PsychoPy experiments in Builder

Introduction

When building inter-participant experiments with PsychoPy's GUI Builder, two issues may arise:

  1. The need for adapting the stimuli to different conditions, according to the group to which the participant is assigned.
  2. Automatically assigning participants to the experimental conditions, such that the amount of participants across the groups is balanced.

These issues can be addressed by adding extensive Python code to Code block available in the Builder. The goal of the autopsypy is to simplify this task, requiring an extremely low amount of Python code to be added to the experiment.

How it works

An example

Let us illustrate how the module works through a very simple example. Imagine that we wish to investigate the participant's preference between two images, say a daisy and a pine. We will present both images simultaneously on the screen during 10 seconds and determine the fixation time on each image using, for instance, oculometric measurements. In order to avoid left/right preferences, we divide the participants into two groups. The daisy will be on the left side and the pine will be on the right side for the first group and vice-versa for the second group, as illustrated below:

figure

In PsychoPy's Builder, this is how a minimalist experiment would be set up, with two Image components and one Code component:

figure

Specifying the conditions

The Code component, which can be placed in any routine of the experiment, must contain, in its section “Before Experiment”, the following code:

from autopsypy import AutoPsyPy
x = AutoPsyPy()

This will create a variable x of class AutoPsyPy. Any name can be used for the variable, x being simply an example here. The autopsypy module will then open the comma-separated value (CSV) file conditions.csv that must exist in the current directory. Any other file name can be used through the argument conditions of AutoPsyPy(). The field delimiter of the CSV file can be specified by the csv_delimiter argument and defaults to the semicolon ";".

The conditions file must contain the names of the columns (that will be used later, see below) and each subsequent line will represent a experimental condition. In our example, the conditions file will look like this:

left;right
daisy.jpg;pine.png
pine.png;daisy.jpg

The names of the columns will be used in the settings of the Image blocks, more precisely in the files “Image”. It must be set to $x["left"] in the component labeled “left” and $x["right"] in the component labeled “right”.

Specifying the groups

The groups are defined by introducing variables in the “Experiment info” section of the Properties window (accessible by clicking on the gear icon). The autopsypy module needs the presence of a “participant” field (with that precise name). A field with name “condition” is forbidden (the experiment will stop with an error message in this case). Any other field created will be used in the definitions of the groups.

Let us say that a field with name “age” was created in the Experiment info section and that participants would be either in the “young” group or in the “old” group, an information that will be provided when the experiment is started.

At the first time the experiment is run, a CSV file sessions.csv will be created (or whichever name is specified through the sessions argument of AutoPsyPy()). This file will have always columns named participant, datetime, and condition. In our present example, a forth column will be added, with name age. If the sessions file already exists, it will be used by autopsypy module and is not recreated. This file will keep a record of which condition was selected for each participant. It can be edited at will between two consecutive sessions, for example for getting rid of a falling participant.

The condition column contains integers that indicate the select line in the conditions file. In our case, the value will be either 1 or 2 (for the daisy on the left side or on the right side, respectively). Let us say that, three participants have already run the experiment, two “young” and one “old.” The sessions file will look like the following:

participant;datetime;age;condition
1;2023-09-05_10h53.01.058;young;1
2;2023-09-06_12h33.38.161;old;1
3;2023-09-06_16h56.26.312;young;2

If the fourth participant is “young”, then condition 1 will be run. otherwise, if the fourth participant is “old”, then condition 2 will be run.

Extra fields can added to the Experiment info section and will contribute to the stratification of participants. For instance, if a new field “gender” is created with two values “male” and “female”, then autopsypy will consider that four groups exist (“young female”, “old female”, “young male”, and “old male”) and will balance the number of conditions 1 and 2 in each group.

At the end of the experiment, the chosen condition is shown to the user.

Author

License: GPL v3

Copyright © 2023 Rafael Laboissière (rafael@laboissiere.net)

autopsypy is distributed under the terms of the terms of the GNU General Public License version 3 or later.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autopsypy-0.0.1.tar.gz (17.4 kB view details)

Uploaded Source

Built Distribution

autopsypy-0.0.1-py3-none-any.whl (18.0 kB view details)

Uploaded Python 3

File details

Details for the file autopsypy-0.0.1.tar.gz.

File metadata

  • Download URL: autopsypy-0.0.1.tar.gz
  • Upload date:
  • Size: 17.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for autopsypy-0.0.1.tar.gz
Algorithm Hash digest
SHA256 7d71b3f476aee192a7e00bdc3bd7d386ff1adc724fb76432bd2002a722c833d9
MD5 e8ec2657f5cecdb83d62cbd15a3762f3
BLAKE2b-256 0ddb0cc0f3e3f39135f152c4e568382a2cf3017ffc62be069816bd1d6652d2cd

See more details on using hashes here.

File details

Details for the file autopsypy-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: autopsypy-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 18.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for autopsypy-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 0716b4e4bacbd381b64e0642073a87db9cb3c083a86a22ccbd5c27106582d79a
MD5 0b211c43250192052a1560c00414eb20
BLAKE2b-256 f6022f3ea16d6f27c340163eacd41108b60824a76965cce54c604521933fd5c1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page