Skip to main content

Automatically conducting a PVM Analysis

Project description


autoPVM v0.3

Automatically conduct Price-Volume-Mix analysis on datasets.
Explore the docs »

Report Bug · Request Feature

About The Project

This project aims at conducting the Price Variance Mix analysis automatically. The main purpose of PVM analysis is to provide a high-level overview view into the past, and to break down the change in revenue or margins into some key components or categories. The categories are used to highlight and help explain how much of the overall change in revenue or margins was caused by, e.g. the implemented Price changes, versus changes in total costs, versus the impact from change in Volumes, versus changes other effects, comparing two different time periods.

(back to top)

Installation

The autoPVM package can be installed using pip.

  1. autoPVM uses Numpy, Pandas & Plotly as dependencies.

  2. Install package

    pip install autoPVM
    

(back to top)

Usage

Import the PVM class using

from autoPVM import PVM

Read a Pandas dataframe

data = pd.read_csv('Sample Dataset/Supermarket Sales.csv')

Create an analysis object and pass the dataframe

pvm = PVM.PVMAnalysis(data=data)

Set column name markers of required quantities and margins

PVM.setMarkers(\
                 quantity_pr='QTY_PM'
               , quantity_ac='QTY_AM'
               , margin_pr='MARGIN_PM'
               , margin_ac='MARGIN_AM'
               , hierarchy=['Customer type', 'Gender', 'Branch', 'Product line'])

quantity_pr marks previous time period quantity.
quantity_ac marks current/next time period quantity.
margin_pr marks previous time period margin.
margin_ac marks current/next time period margin.
hierarchy marks dimensional heirarchy: [Highest Level, .. , Lowest Level].

Calculate the margin bridge using pvm.calculateMarginBridge()

Plot the bridge using

pvm.plotPVMBridge()

Final dimension aggregate can be exported using

pvm.exportMarginBridgeFile()

(back to top)

Contributing

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

(back to top)

License

Distributed under the Apache-2.0 License. See LICENSE.txt for more information.

(back to top)

Contact

Akash Sonthalia - @LinkedIn - axsonthalia@gmail.com Project Link: https://github.com/asonthalia/autoPVM

(back to top)

Acknowledgments

(back to top)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autoPVM-0.3.tar.gz (7.3 kB view details)

Uploaded Source

Built Distribution

autoPVM-0.3-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file autoPVM-0.3.tar.gz.

File metadata

  • Download URL: autoPVM-0.3.tar.gz
  • Upload date:
  • Size: 7.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.6.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for autoPVM-0.3.tar.gz
Algorithm Hash digest
SHA256 4ea02a0297944fd56bc272bb702bb30a912f57987142ad439974f5846a186db1
MD5 8c3eb1cc297187659ddfef455e0cc71c
BLAKE2b-256 c77ac07539f46736506cdfdfc2cfd567553891368d54e2e6d15fe25467a2f013

See more details on using hashes here.

File details

Details for the file autoPVM-0.3-py3-none-any.whl.

File metadata

  • Download URL: autoPVM-0.3-py3-none-any.whl
  • Upload date:
  • Size: 10.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.6.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for autoPVM-0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 8983bd808e61b8aff59ccf1c2c74cdd97c1a78c371f6bf6bc9f7c99ce4d6f065
MD5 a2a1dfca9863ddf3dbdf2fb3fabe7be2
BLAKE2b-256 5d5c44d50e78430123d0e93189c8acc06475d85d38d3c175c9e90268b97b6183

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page