Skip to main content

Autonomous Research Assistant (AutoRA) is a framework for automating steps of the empirical research process.

Project description

Automated Research Assistant

PyPI GitHub Workflow Status PyPI - Downloads Link to docs License: MIT GitHub Discussions DOI status

BRAINSTORM Program     Schmidt Science Fellows

AutoRA (Automated Research Assistant) is an open-source framework for automating multiple stages of the empirical research process, including model discovery, experimental design, data collection, and documentation for open science.

AutoRA was initially intended for accelerating research in the behavioral and brain sciences. However, AutoRA is designed as a general framework that enables automation of the research processes in other empirical sciences, such as material science or physics.

Autonomous Empirical Research Paradigm

Installation

We recommend using a Python environment manager like virtualenv. You may refer to the Development Guide on how to set up a virtual environment.

Before installing the PyPI autora package, you may activate your environment. To install the PyPI autora package, run the following command:

pip install "autora"

Documentation

Check out tutorials and documentation at https://autoresearch.github.io/autora. If you run into any issues or questions regarding the use of AutoRA, please reach out to us at the AutoRA forum.

Example

The following example demonstrates how to use AutoRA to automate the process of model discovery, experimental design, and data collection.

The discovery problem is defined by a single independent variable $x \in [0, 2 \pi]$ and dependent variable $y$. The experiment amounts to a simple sine wave, $y = \sin(x)$, which is the model we are trying to discover.

Th discovery cycle iterates between the experimentalist, experiment runner, and theorist. Here, we us a "random" experimentalist, which samples novel experimental conditions for $x$ every cycle. The experiment runner then collects data for the corresponding $y$ values. Finally, the theorist uses a Bayesian Machine Scientist (BMS; Guimerà et al., in Science Advances) to identify a scientific model that explains the data.

The workflow relies on the StandardState object, which stores the current state of the discovery process, such as conditions, experiment_data, or models. The state is passed between the experimentalist, experiment runner, and theorist.

####################################################################################
## Import statements
####################################################################################

import pandas as pd 
import numpy as np
import sympy as sp

from autora.variable import Variable, ValueType, VariableCollection

from autora.experimentalist.random import random_pool
from autora.experiment_runner.synthetic.abstract.equation import equation_experiment
from autora.theorist.bms import BMSRegressor

from autora.state import StandardState, on_state, estimator_on_state

####################################################################################
## Define initial data
####################################################################################

#### Define variable data ####
iv = Variable(name="x", value_range=(0, 2 * np.pi), allowed_values=np.linspace(0, 2 * np.pi, 30))
dv = Variable(name="y", type=ValueType.REAL)
variables = VariableCollection(independent_variables=[iv],dependent_variables=[dv])

#### Define seed condition data ####
conditions = random_pool(variables, num_samples=10, random_state=0)

####################################################################################
## Define experimentalist
####################################################################################

experimentalist = on_state(random_pool, output=["conditions"])

####################################################################################
## Define experiment runner
####################################################################################

sin_experiment = equation_experiment(sp.simplify('sin(x)'), variables.independent_variables, variables.dependent_variables[0])
sin_runner = sin_experiment.experiment_runner

experiment_runner = on_state(sin_runner, output=["experiment_data"])

####################################################################################
## Define theorist
####################################################################################

theorist = estimator_on_state(BMSRegressor(epochs=100))

####################################################################################
## Define state
####################################################################################

s = StandardState(
    variables = variables,
    conditions = conditions,
    experiment_data = pd.DataFrame(columns=["x","y"])
)

####################################################################################
## Cycle through the state
####################################################################################

print('Pre-Defined State:')
print(f"Number of datapoints collected: {len(s['experiment_data'])}")
print(f"Derived models: {s['models']}")
print('\n')

for i in range(5):
    s = experimentalist(s, num_samples=10, random_state=42)
    s = experiment_runner(s, added_noise=1.0, random_state=42)
    s = theorist(s)
    print(f"\nCycle {i+1} Results:")
    print(f"Number of datapoints collected: {len(s['experiment_data'])}")
    print(f"Derived models: {s['models']}")
    print('\n')

Contributions

We welcome contributions to the AutoRA project. Please refer to the contributor guide for more information. Also, feel free to ask any questions or provide any feedback regarding core contributions on the AutoRA forum.

About

This project is in active development by the Autonomous Empirical Research Group, in collaboration with the Center for Computation and Visualization at Brown University.

The development of this package is supported by Schmidt Science Fellows, in partnership with the Rhodes Trust, as well as the Carney BRAINSTORM program at Brown University.

Read More

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autora-4.1.0.tar.gz (4.2 MB view details)

Uploaded Source

Built Distribution

autora-4.1.0-py3-none-any.whl (5.9 kB view details)

Uploaded Python 3

File details

Details for the file autora-4.1.0.tar.gz.

File metadata

  • Download URL: autora-4.1.0.tar.gz
  • Upload date:
  • Size: 4.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for autora-4.1.0.tar.gz
Algorithm Hash digest
SHA256 dc24bfdcb390e3467ac17a1f0bf5a93006553db0af609874d428c3c45e422122
MD5 d63e08534c08f37ef9a51d6ff02ce705
BLAKE2b-256 7f30ce8a4c27b8508357940a23561484af4e8fd1ce8497d3c00917d605e39a9d

See more details on using hashes here.

File details

Details for the file autora-4.1.0-py3-none-any.whl.

File metadata

  • Download URL: autora-4.1.0-py3-none-any.whl
  • Upload date:
  • Size: 5.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for autora-4.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8470cf99387dfcdc3c648674257fe4ecf9e8c2a1c87fb62bfe06c73951401cd8
MD5 385c85506131cd2900bcd40451e12ccf
BLAKE2b-256 419b3a9a06fc4d4830ca7dda0ce9509319c16a67c60f94cde8d1e38504a8ef67

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page