Skip to main content

Automatic documentation generator from AutoRA code

Project description

AutoDoc

ssec

Template

GitHub Workflow Status codecov

This project was automatically generated using the LINCC-Frameworks python-project-template. For more information about the project template see the documentation.

Dev Guide - Getting Started

Before installing any dependencies or writing code, it's a great idea to create a virtual environment. We recommend using conda to manage virtual environments. If you have conda installed locally, you can run the following to create and activate a new environment.

>> conda create env -n <env_name> python=3.8
>> conda activate <env_name>

Once you have created a new environment, you can install this project for local development using the following commands:

>> pip install -e .'[dev,train]'
>> pre-commit install
>> conda install pandoc

Notes:

  1. The single quotes around '[dev]' may not be required for your operating system.
  2. Look at pyproject.toml for other optional dependencies, e.g. you can do pip install -e ."[dev,train,cuda]" if you want to use CUDA.
  3. pre-commit install will initialize pre-commit for this local repository, so that a set of tests will be run prior to completing a local commit. For more information, see the Python Project Template documentation on pre-commit
  4. Install pandoc allows you to verify that automatic rendering of Jupyter notebooks into documentation for ReadTheDocs works as expected. For more information, see the Python Project Template documentation on Sphinx and Python Notebooks

Running AzureML pipelines

This repo contains the evaluation and training pipelines for AutoDoc.

Prerequisites

Install Azure CLI

Add the ML extension:

az extension add --name ml

Configure the CLI:

az login
az account set --subscription "<your subscription name>"
az configure --defaults workspace=<aml workspace> group=<resource group> location=<location, e.g. westus3>

Running jobs

Prediction

az ml job create -f azureml/eval.yml  --set display_name="Test prediction job" --set environment_variables.HF_TOKEN=<your huggingface token> --web

Notes:

  • --name will set the mlflow run id
  • --display_name becomes the name in the experiment dashboard
  • --web argument will pop-up a browser window for tracking the job.
  • The HF_TOKEN is required for gated repos, which need authentication

Uploading data

Example:

az storage blob upload  --account-name <account> --container <container>> --file data/data.jsonl -n data/sweetpea/data.jsonl

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autora_doc-0.0.2.tar.gz (9.0 kB view details)

Uploaded Source

Built Distribution

autora_doc-0.0.2-py3-none-any.whl (9.9 kB view details)

Uploaded Python 3

File details

Details for the file autora_doc-0.0.2.tar.gz.

File metadata

  • Download URL: autora_doc-0.0.2.tar.gz
  • Upload date:
  • Size: 9.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for autora_doc-0.0.2.tar.gz
Algorithm Hash digest
SHA256 694c4d8703eefe98e2a3c85a2e8b4e3eb6b0171b4851ae2455a6fb8a81c0a168
MD5 d3d034563b30ccc2da26bee57a5feac9
BLAKE2b-256 20697f6964cae47d59bb51866e4bf4227bb448b84534b7085a1c1b2c6297029e

See more details on using hashes here.

File details

Details for the file autora_doc-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: autora_doc-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 9.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for autora_doc-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 7f5167faea25a7cf0dd98ec36e36201992c8a230fe8204bc39af79fe4b0076cd
MD5 33c7f93739a12682980e0a14fe40259b
BLAKE2b-256 f59c47bdec70139895bb834b67b482d4a71ace9eb60419841e01e8f72f9a4ba2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page