Skip to main content

Automatic documentation generator from AutoRA code

Project description

AutoDoc

ssec

Template

GitHub Workflow Status codecov

This project was automatically generated using the LINCC-Frameworks python-project-template. For more information about the project template see the documentation.

Dev Guide - Getting Started

Before installing any dependencies or writing code, it's a great idea to create a virtual environment. We recommend using conda to manage virtual environments. If you have conda installed locally, you can run the following to create and activate a new environment.

>> conda create env -n <env_name> python=3.8
>> conda activate <env_name>

Once you have created a new environment, you can install this project for local development using the following commands:

>> pip install -e .'[dev,train]'
>> pre-commit install
>> conda install pandoc

Notes:

  1. The single quotes around '[dev]' may not be required for your operating system.
  2. Look at pyproject.toml for other optional dependencies, e.g. you can do pip install -e ."[dev,train,cuda]" if you want to use CUDA.
  3. pre-commit install will initialize pre-commit for this local repository, so that a set of tests will be run prior to completing a local commit. For more information, see the Python Project Template documentation on pre-commit
  4. Install pandoc allows you to verify that automatic rendering of Jupyter notebooks into documentation for ReadTheDocs works as expected. For more information, see the Python Project Template documentation on Sphinx and Python Notebooks

Running AzureML pipelines

This repo contains the evaluation and training pipelines for AutoDoc.

Prerequisites

Install Azure CLI

Add the ML extension:

az extension add --name ml

Configure the CLI:

az login
az account set --subscription "<your subscription name>"
az configure --defaults workspace=<aml workspace> group=<resource group> location=<location, e.g. westus3>

Running jobs

Prediction

az ml job create -f azureml/eval.yml  --set display_name="Test prediction job" --set environment_variables.HF_TOKEN=<your huggingface token> --web

Notes:

  • --name will set the mlflow run id
  • --display_name becomes the name in the experiment dashboard
  • --web argument will pop-up a browser window for tracking the job.
  • The HF_TOKEN is required for gated repos, which need authentication

Uploading data

Example:

az storage blob upload  --account-name <account> --container <container>> --file data/data.jsonl -n data/sweetpea/data.jsonl

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autora_doc-0.0.3.tar.gz (10.0 kB view details)

Uploaded Source

Built Distribution

autora_doc-0.0.3-py3-none-any.whl (11.1 kB view details)

Uploaded Python 3

File details

Details for the file autora_doc-0.0.3.tar.gz.

File metadata

  • Download URL: autora_doc-0.0.3.tar.gz
  • Upload date:
  • Size: 10.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for autora_doc-0.0.3.tar.gz
Algorithm Hash digest
SHA256 692e2ae2afa3d94ff4cdf1984a0ae1b929e1421cbf407b8568dc460988ad6729
MD5 cefbed699a8028677ea1ef5f85c04aab
BLAKE2b-256 1e346f2c6b96961c35799dc5ba965c29a0deb83189feb4a1e557938206a2fe3e

See more details on using hashes here.

File details

Details for the file autora_doc-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: autora_doc-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 11.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for autora_doc-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 4793909ac5f12efd946ce62c00b08c5b2103648e5f7d3e77a2e8d2da2ddf3438
MD5 065ebed95662e7e977ee4099d90ce93a
BLAKE2b-256 87dced3d299b1c5dc23d3c2d582994639d1b084b8f446e934a025aa8d2a716e2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page