Skip to main content

Automatic documentation generator from AutoRA code

Project description

AutoDoc

ssec

Template

GitHub Workflow Status codecov

This project was automatically generated using the LINCC-Frameworks python-project-template. For more information about the project template see the documentation.

Dev Guide - Getting Started

Before installing any dependencies or writing code, it's a great idea to create a virtual environment. We recommend using conda to manage virtual environments. If you have conda installed locally, you can run the following to create and activate a new environment.

>> conda create env -n <env_name> python=3.8
>> conda activate <env_name>

Once you have created a new environment, you can install this project for local development using the following commands:

>> pip install -e .'[dev,train]'
>> pre-commit install
>> conda install pandoc

Notes:

  1. The single quotes around '[dev]' may not be required for your operating system.
  2. Look at pyproject.toml for other optional dependencies, e.g. you can do pip install -e ."[dev,train,cuda]" if you want to use CUDA.
  3. pre-commit install will initialize pre-commit for this local repository, so that a set of tests will be run prior to completing a local commit. For more information, see the Python Project Template documentation on pre-commit
  4. Install pandoc allows you to verify that automatic rendering of Jupyter notebooks into documentation for ReadTheDocs works as expected. For more information, see the Python Project Template documentation on Sphinx and Python Notebooks

Running AzureML pipelines

This repo contains the evaluation and training pipelines for AutoDoc.

Prerequisites

Install Azure CLI

Add the ML extension:

az extension add --name ml

Configure the CLI:

az login
az account set --subscription "<your subscription name>"
az configure --defaults workspace=<aml workspace> group=<resource group> location=<location, e.g. westus3>

Running jobs

Prediction

az ml job create -f azureml/eval.yml  --set display_name="Test prediction job" --set environment_variables.HF_TOKEN=<your huggingface token> --web

Notes:

  • --name will set the mlflow run id
  • --display_name becomes the name in the experiment dashboard
  • --web argument will pop-up a browser window for tracking the job.
  • The HF_TOKEN is required for gated repos, which need authentication

Uploading data

Example:

az storage blob upload  --account-name <account> --container <container>> --file data/data.jsonl -n data/sweetpea/data.jsonl

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autora_doc-0.0.4.tar.gz (10.8 kB view details)

Uploaded Source

Built Distribution

autora_doc-0.0.4-py3-none-any.whl (12.3 kB view details)

Uploaded Python 3

File details

Details for the file autora_doc-0.0.4.tar.gz.

File metadata

  • Download URL: autora_doc-0.0.4.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for autora_doc-0.0.4.tar.gz
Algorithm Hash digest
SHA256 7beba676b8d5cdea2364eec37a19aa537729395996f3eee7b182198df37ca941
MD5 252f2fab3b83b3f04ff9e97c1ac5608f
BLAKE2b-256 9c25511f782dd1cedb491639c7cc5ddd658ac356504a898b0d90a127e1381710

See more details on using hashes here.

File details

Details for the file autora_doc-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: autora_doc-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 12.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for autora_doc-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 0d445e8124ed4d840a61d6fc27c78522349610a8f7e6f00557cfd3c8c6690311
MD5 c77996bbef1ceb690ba9a8ad3b59051e
BLAKE2b-256 9f10650d1a5bc62b489a1c9d1b96dc1969704905ba7f332a9ad336e312759288

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page