Skip to main content

Automatic documentation generator from AutoRA code

Project description

AutoDoc

ssec

Template

GitHub Workflow Status codecov

This project was automatically generated using the LINCC-Frameworks python-project-template. For more information about the project template see the documentation.

Dev Guide - Getting Started

Before installing any dependencies or writing code, it's a great idea to create a virtual environment. We recommend using conda to manage virtual environments. If you have conda installed locally, you can run the following to create and activate a new environment.

>> conda create env -n <env_name> python=3.8
>> conda activate <env_name>

Once you have created a new environment, you can install this project for local development using the following commands:

>> pip install -e .'[dev,pipelines]'
>> pre-commit install
>> conda install pandoc

Notes:

  1. The single quotes around '[dev]' may not be required for your operating system.
  2. Look at pyproject.toml for other optional dependencies, e.g. you can do pip install -e ."[dev,pipelines,cuda]" if you want to use CUDA.
  3. pre-commit install will initialize pre-commit for this local repository, so that a set of tests will be run prior to completing a local commit. For more information, see the Python Project Template documentation on pre-commit
  4. Install pandoc allows you to verify that automatic rendering of Jupyter notebooks into documentation for ReadTheDocs works as expected. For more information, see the Python Project Template documentation on Sphinx and Python Notebooks

Running AzureML pipelines

This repo contains the evaluation and training pipelines for AutoDoc.

Prerequisites

Install Azure CLI

Add the ML extension:

az extension add --name ml

Configure the CLI:

az login
az account set --subscription "<your subscription name>"
az configure --defaults workspace=<aml workspace> group=<resource group> location=<location, e.g. westus3>

Running jobs

Prediction

az ml job create -f azureml/eval.yml  --set display_name="Test prediction job" --set environment_variables.HF_TOKEN=<your huggingface token> --web

Notes:

  • --name will set the mlflow run id
  • --display_name becomes the name in the experiment dashboard
  • --web argument will pop-up a browser window for tracking the job.
  • The HF_TOKEN is required for gated repos, which need authentication

Uploading data

Example:

az storage blob upload  --account-name <account> --container <container>> --file data/data.jsonl -n data/sweetpea/data.jsonl

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autora_doc-0.0.5.tar.gz (11.2 kB view details)

Uploaded Source

Built Distribution

autora_doc-0.0.5-py3-none-any.whl (13.0 kB view details)

Uploaded Python 3

File details

Details for the file autora_doc-0.0.5.tar.gz.

File metadata

  • Download URL: autora_doc-0.0.5.tar.gz
  • Upload date:
  • Size: 11.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for autora_doc-0.0.5.tar.gz
Algorithm Hash digest
SHA256 d7ff2a350547ec1f965ff5f0174d07481b238287d3f354c8fc26070d4a1a1648
MD5 b947e6c0d97fbc600c76e58a69b0b88e
BLAKE2b-256 d6ef8a6aa5f306fbe9168321781af54ff85d43eb3d447f01fb27ef71ab326a40

See more details on using hashes here.

File details

Details for the file autora_doc-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: autora_doc-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 13.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for autora_doc-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 09dd76dfdec153b12464bf383cd356340c8fcd9ef96af6185b1100bcbcfeea67
MD5 249ec9554b3219c0d3e940bc0d553fa6
BLAKE2b-256 4ab9a3baae7446f71b2071341355a140d31f5c54ad154d425f28fd503d50d47f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page