Skip to main content

sampling based on divergence

Project description

AutoRA Divergence Experimentalist

The divergence experimentalist identifies experimental conditions $\vec{x}' \in X'$ with respect the distance between existing experimental data $\vec{x}, $\vec{y} and data predicted by a model $\vec{x_pool}, $\vec{y_pred}:

$$ \underset{\vec{x}'}{\arg\max}~sum(d((\vec{x}, \vec{y}), (\vec{x_pool}, \vec{y_pred})) $$

The aim of this experimentalist is to combine novelty and uncertainty by using a distance that combines both: The distance between existing conditions to new conditions and the distance of existing observations to predictions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file autora_experimentalist_divergence-0.0.2.tar.gz.

File metadata

File hashes

Hashes for autora_experimentalist_divergence-0.0.2.tar.gz
Algorithm Hash digest
SHA256 a54f5652acffc866f5ff0945fe0faa22456d1ceba3f1cf7ae7142fbcb2d02620
MD5 15ff845ea73c986e1a6c26ced9631f6f
BLAKE2b-256 19c05d06458d879472d2b9eaafc863b742f8747d340c7eb27e05e785d428a28a

See more details on using hashes here.

File details

Details for the file autora_experimentalist_divergence-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for autora_experimentalist_divergence-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 3158a0bd09dab7541a1b202050810460147990472c8eca327a7e58c1d86fa556
MD5 44b5c0fd66f7ac6af188034be1a2e10e
BLAKE2b-256 c572a6a26feb3f97ec6f955d788c506bf53202c0236f98752ea8ce10a9edf042

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page