Skip to main content

AutoRA Falsification Experimentalist

Project description

AutoRA Falsification Experimentalist

The falsification pooler and sampler identify novel experimental conditions $X'$ under which the loss $\hat{\mathcal{L}}(M,X,Y,X')$ of the best candidate model is predicted to be the highest. This loss is approximated with a multi-layer perceptron, which is trained to predict the loss of a candidate model, $M$, given experiment conditions $X$ and dependent measures $Y$ that have already been probed:

$$ \underset{X'}{argmax}~\hat{\mathcal{L}}(M,X,Y,X'). $$

Quickstart Guide

You will need:

Falsification Experimentalist is a part of the autora package:

pip install -U autora["experimentalist-falsification"]

Check your installation by running:

python -c "from autora.experimentalist.falsification import falsification_pool"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file autora_experimentalist_falsification-2.1.0.tar.gz.

File metadata

File hashes

Hashes for autora_experimentalist_falsification-2.1.0.tar.gz
Algorithm Hash digest
SHA256 5f76e394651f8648fd58552a0e21ba4c75a1bdc86adc7cec494a97ab4c24dd50
MD5 300d3594ef2913ca24d5055b9abb7fd7
BLAKE2b-256 0ae8901ed1ba3dbce93aa54a2b8ed27fb31e74d777da8ae8bb010931122eaae5

See more details on using hashes here.

File details

Details for the file autora_experimentalist_falsification-2.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for autora_experimentalist_falsification-2.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b43c8978f23ae3c5c2756da814c03e493e8e10664825f770ff9c63b4dcfc6220
MD5 952adf77a0e272ea3bc208bbedd5dfbf
BLAKE2b-256 6b1790ed183d279768a3ef65e08ce4e475fe50db1f9aed43cc0260c581ef4e50

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page