Skip to main content

Sampler based on where the model is least certain.

Project description

AutoRA Uncertainty Sampler

The uncertainty sampler identifies experimental conditions $\vec{x}' \in X'$ with respect model uncertainty. Within the uncertainty sampler, there are three methods to determine uncertainty:

Least Confident

$$ x^* = \text{argmax} \left( 1-P(\hat{y}|x) \right), $$

where $\hat{y} = \text{argmax} P(y_i|x)$

Margin

$$ x^* = \text{argmax} \left( P(\hat{y}_1|x) - P(\hat{y}_2|x) \right), $$

where $\hat{y}_1$ and $\hat{y}_2$ are the first and second most probable class labels under the model, respectively.

Entropy

$$ x^* = \text{argmax} \left( - \sum P(y_i|x)\text{log} P(y_i|x) \right) $$

Example Code

from autora.experimentalist.sampler.uncertainty import uncertainty_sampler
from sklearn.linear_model import LogisticRegression
import numpy as np

#Meta-Setup
X = np.linspace(start=-3, stop=6, num=10).reshape(-1, 1)
y = (X**2).reshape(-1)
n = 5

#Theorists
lr_theorist = LogisticRegression()
lr_theorist.fit(X,y)

#Sampler
X_new = uncertainty_sampler(X, lr_theorist, n, measure ="least_confident")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file autora-experimentalist-sampler-uncertainty-1.0.1.tar.gz.

File metadata

File hashes

Hashes for autora-experimentalist-sampler-uncertainty-1.0.1.tar.gz
Algorithm Hash digest
SHA256 ee4499aa6233713eb4b93b013ff4e747ca730307701e55f09434053cca2fde0a
MD5 4cd61ca48f72b9cf24297eff3f471758
BLAKE2b-256 c86fbcff9a07338769f3b0519846b61a3045880e19b9ad30d841c3f33178ccc7

See more details on using hashes here.

File details

Details for the file autora_experimentalist_sampler_uncertainty-1.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for autora_experimentalist_sampler_uncertainty-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 589ff600ab2b6f1fcb0eea127bbc10c33d3b829aa746b03dd8329fd5e49dd165
MD5 73ea08b22dda48831adb245d9a0990e1
BLAKE2b-256 b9be913664adc4979da575b1b3de630d08982edee2eb64342320d6e73f6298a4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page