Differentiable Architecture Search theorist for AutoRA
Project description
AutoRA Differentiable Architecture Search
autora-theorist-darts
is a Python module for fitting data using differentiable architecture
search, built on AutoRA.
Website: https://autoresearch.github.io/autora/
User Guide
You will need:
python
3.8 or greater: https://www.python.org/downloads/graphviz
(optional, required for computation graph visualizations): https://graphviz.org/download/
Install DARTS as part of the autora
package:
pip install -U "autora[theorist-darts]"
It is recommended to use a
python
environment manager likevirtualenv
.
Check your installation by running:
python -c "from autora.theorist.darts import DARTSRegressor; DARTSRegressor()"
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
autora_theorist_darts-1.1.0.tar.gz
(532.6 kB
view details)
Built Distribution
File details
Details for the file autora_theorist_darts-1.1.0.tar.gz
.
File metadata
- Download URL: autora_theorist_darts-1.1.0.tar.gz
- Upload date:
- Size: 532.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 79b74f9b295cc6e0face31c999f17883f27d46e53cdc8fa4aeb363007914c7ad |
|
MD5 | afd78b52025484e12e93ea5063634036 |
|
BLAKE2b-256 | fee559f47019aab5582a9b7104db8aca9a21d1e1f2f2428d39d8ec759299b26a |
File details
Details for the file autora_theorist_darts-1.1.0-py3-none-any.whl
.
File metadata
- Download URL: autora_theorist_darts-1.1.0-py3-none-any.whl
- Upload date:
- Size: 32.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7fb7fde7cdabc2ae7a5409a303a5766e6f3d73677c50c97586d232bd10090590 |
|
MD5 | 1227a07ff56e89501a9f4d560ddbb025 |
|
BLAKE2b-256 | 562d99a95a8576739b88eea4ca9e7981121ec08425a33b8b9e50dc6b6d316814 |