Skip to main content

No project description provided

Project description

AutoRes Evaluator

※ 追加で実装して欲しい機能や質問などがあれば以下のissuesから投稿をお願いします

https://github.com/auto-res/autores-evaluator/issues/new

Examples

  • Prediction by logistic regression on the Titanic dataset Open In Colab

  • Prediction by CNN on CIFAR10 Open In Colab

Architecture

ロゴ1

How to use

pip install autoresevaluator

from autoresevaluator import AutoResEvaluator
  • Setting
# Hyperparameter setting
# Specify "type" and "args" for items to be searched in optuna.
params = {
    'lambda_l1': {'type': 'log_float', 'args': [1e-8, 10.0]},
    'lambda_l2': {'type': 'log_float', 'args': [1e-8, 10.0]},
    'num_leaves': {'type': 'int', 'args': [2, 256]},
    'feature_fraction': {'type': 'float', 'args': [0.4, 1.0]},
    'bagging_fraction': {'type': 'float', 'args': [0.4, 1.0]},
    'verbosity': -1
}

are = AutoResEvaluator(
    # dataset name
    dataset_name='titanic',
    # model file path
    model_path='/content/example.py',
    # parameter
    params=params,
    # Metrics you want to maximize/minimize
    valuation_index='roc_auc',
    # Where to store data
    datasave_path=None
    )
  • Execution
are.exec()

Output

  • result.log

    • File to output the results
  • model_error.log

    • File to write errors in model files

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autoresevaluator-0.1.11.tar.gz (9.5 kB view details)

Uploaded Source

Built Distribution

autoresevaluator-0.1.11-py3-none-any.whl (13.5 kB view details)

Uploaded Python 3

File details

Details for the file autoresevaluator-0.1.11.tar.gz.

File metadata

  • Download URL: autoresevaluator-0.1.11.tar.gz
  • Upload date:
  • Size: 9.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.9.18 Darwin/23.2.0

File hashes

Hashes for autoresevaluator-0.1.11.tar.gz
Algorithm Hash digest
SHA256 0fcbc48d2464980c3b00c483e9e41dcae9f1ae25ea3feb7a1452c9d2b068d43d
MD5 5220d63c1c236469aa22c4d513a8ddf5
BLAKE2b-256 1d3197d4758fa5de16a3f5d92579b7964013ec16b203ba1550d45e689f785519

See more details on using hashes here.

File details

Details for the file autoresevaluator-0.1.11-py3-none-any.whl.

File metadata

File hashes

Hashes for autoresevaluator-0.1.11-py3-none-any.whl
Algorithm Hash digest
SHA256 bab7bcb02634c87117ef2c658db60776cba23636530dd9d4d8bc9ab115a3dd94
MD5 e1ac37d784bc16f5bf560808bc30bed8
BLAKE2b-256 9af5adb340cfab41b6bab2e4430f81a5b363296ef11ff6978de896292d7867bf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page