Skip to main content

Automatic generate QA from slides and grade marker/memo.

Project description

AutoTA

提供BookRoll中的Marker/Memo評分功能,以及教材推薦功能

準備

以下四個服務需要先以docker在本地端或遠端建立

  1. Question generation service(問題生成才要)
  2. BERT pre-trained model service
  3. BERT fine-tuned model service(簡答題評分才要)
  4. Google cloud translation service(問題生成才要)

安裝

pip install autota

使用

獲取Marker/Memo分數

from autota.grader import Grader

grader = Grader(pdf_path='./test.pdf', 
		bert_api_port=PRETRAINED_BERT_SERVICE_PORT, 
		bert_api_url='PRETRAINED_BERT_SERVICE_HOST')
print(grader.grade_marker('marker text')) #得到單一marker分數
print(grader.grade_memo('memo text')) #得到單一memo分數

獲取教材推薦頁數

from autota.recommender import Recommender

#num_page指定要推薦多少頁
recommender = Recommender(pdf_path='./test.pdf', num_page=2, 
			api_port=PRETRAINED_BERT_SERVICE_PORT, 
			api_url='PRETRAINED_BERT_SERVICE_HOST')

print(recommender.guiding_from(ta_ans='要推薦的概念'))
#輸出為[(2, 0.0778473040773201), (1, 0.08752984923065377)]
#tuple第一項元素即為頁數,第二項為該頁與ta_ans概念間的餘弦距離

從教材自動生成問題

from autota.generator import Generator

#num_page指定要推薦多少頁
generator = Generator(pdf_path='./test.pdf',, 
			translate_api_port=TRANSLATE_SERVICE_PORT, 
			translate_api_url='TRANSLATE_SERVICE_HOST',
			gpt2_api_port=GPT2_SERVICE_PORT,
			gpt2_api_url='GPT2_SERVICE_HOST')

print(generator.get_qa())
#輸出為[('What is the first thing that can be a variable name?', '變數名稱的第一個字不可為數字')]
#list中每個tuple為一組QA pair

開發中

  1. 簡答題自動評分

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autota-0.0.3.tar.gz (7.9 kB view details)

Uploaded Source

Built Distribution

autota-0.0.3-py3-none-any.whl (9.1 kB view details)

Uploaded Python 3

File details

Details for the file autota-0.0.3.tar.gz.

File metadata

  • Download URL: autota-0.0.3.tar.gz
  • Upload date:
  • Size: 7.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.2

File hashes

Hashes for autota-0.0.3.tar.gz
Algorithm Hash digest
SHA256 1431df8ffda349d7a6513b883f5275f66027866f467b695a790ee4b4334abe90
MD5 4621250ac9bfa19dee9e187048e2ec9d
BLAKE2b-256 3f15f9c407328677812023d7e44c6dc81214cece5a65efe10d1bc27cbbc99d6e

See more details on using hashes here.

File details

Details for the file autota-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: autota-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 9.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.2

File hashes

Hashes for autota-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 e0b5d8d7fe4dede6dbb9c92b8957c09a10014bead188bab5922f509a6713d959
MD5 fa6e4edbac9f51cdf63239ab2ef44137
BLAKE2b-256 a40771820c0796ebe9771a57f3b03bb1739b9cd4b674d7404cf9ac7c97f0e0bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page