Skip to main content

Automatic threshold optimization

Project description

Autoth: Automatic optimzie hyper parameters

Autoth is a Python toolbox to automatically optimize hyper parameters to maximize scores. For example, Autoth can optimize hyper parameters to maximize F1 score in a classification task. In practice, Autoth numerically calculate gradients of scores over hyper parameters. Then, the hyper parameters are updated according to the gradients iteratively. Please see [1] for details.

Install

pip install autoth

Example

python3 example.py

Results

------ Manually selected hyper parameters ------
Hyper parameters: [0.3, 0.3, 0.3]
Score: 0.5556

------ Automatic optimized hyper parameters ------
Optimizing hyper parameters ...
learning rate: 0.010, total epochs: 10
    Hyper parameters: [0.3, 0.31, 0.29], score: 0.5556
    Epoch: 0, Time: 0.0181 s
    Hyper parameters: [0.3, 0.3197, 0.2801], score: 0.5556
    Epoch: 1, Time: 0.0178 s
    Hyper parameters: [0.3, 0.3237, 0.2702], score: 0.5714
    Epoch: 2, Time: 0.0212 s
    Hyper parameters: [0.3, 0.3245, 0.263], score: 0.6099
    Epoch: 3, Time: 0.0144 s
    Hyper parameters: [0.3, 0.3232, 0.2548], score: 0.6099
    Epoch: 4, Time: 0.0142 s
    Hyper parameters: [0.3, 0.3204, 0.2464], score: 0.6099
    Epoch: 5, Time: 0.0151 s
    Hyper parameters: [0.3, 0.3164, 0.2382], score: 0.6099
    Epoch: 6, Time: 0.0159 s
    Hyper parameters: [0.3, 0.316, 0.2302], score: 0.5940
    Epoch: 7, Time: 0.0143 s
    Hyper parameters: [0.3, 0.318, 0.2226], score: 0.5940
    Epoch: 8, Time: 0.0150 s
    Hyper parameters: [0.3, 0.3186, 0.2152], score: 0.6099
    Epoch: 9, Time: 0.0177 s

Optimized hyper parameters: [0.3, 0.3186, 0.2152]
Score: 0.6099

Cite

[1] Kong, Qiuqiang, Yong Xu, Wenwu Wang, and Mark D. Plumbley. "Sound Event Detection of Weakly Labelled Data with CNN-Transformer and Automatic Threshold Optimization." arXiv preprint arXiv:1912.04761 (2019).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autoth-0.0.1.tar.gz (2.9 kB view details)

Uploaded Source

Built Distribution

autoth-0.0.1-py3-none-any.whl (4.0 kB view details)

Uploaded Python 3

File details

Details for the file autoth-0.0.1.tar.gz.

File metadata

  • Download URL: autoth-0.0.1.tar.gz
  • Upload date:
  • Size: 2.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for autoth-0.0.1.tar.gz
Algorithm Hash digest
SHA256 d58a50d2d7cc51b99340f7987bd47315281570bc1f3bf96febe44ba0b558263d
MD5 0cc592d44270d5589e8b22520c168fab
BLAKE2b-256 5c2d3ac289307e50804fecf23717239b1ee25fd5614176b38e778f6968f3773e

See more details on using hashes here.

File details

Details for the file autoth-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: autoth-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 4.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for autoth-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 42a1fdd9a8560ae4d910d9ff0eccf07936bd8625f04f37a1c82bb6e46042375e
MD5 2aa4469fc4bbeac553526dd9a4458c54
BLAKE2b-256 71ccbd55374045ad1e3799d08b620af054f0aef78352c49cededa75d76e3d37b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page