Skip to main content

Automatic threshold optimization

Project description

Autoth: Automatic optimzie hyper parameters

Autoth is a Python toolbox to automatically optimize hyper parameters to maximize scores. For example, Autoth can optimize hyper parameters to maximize F1 score in a classification task. In practice, Autoth numerically calculate gradients of scores over hyper parameters. Then, the hyper parameters are updated according to the gradients iteratively. Please see [1] for details.

Install

pip install autoth

Example

python3 example.py

Results

------ Manually selected hyper parameters ------
Hyper parameters: [0.3, 0.3, 0.3]
Score: 0.5556

------ Automatic optimized hyper parameters ------
Optimizing hyper parameters ...
learning rate: 0.010, total epochs: 10
    Hyper parameters: [0.3, 0.31, 0.29], score: 0.5556
    Epoch: 0, Time: 0.0181 s
    Hyper parameters: [0.3, 0.3197, 0.2801], score: 0.5556
    Epoch: 1, Time: 0.0178 s
    Hyper parameters: [0.3, 0.3237, 0.2702], score: 0.5714
    Epoch: 2, Time: 0.0212 s
    Hyper parameters: [0.3, 0.3245, 0.263], score: 0.6099
    Epoch: 3, Time: 0.0144 s
    Hyper parameters: [0.3, 0.3232, 0.2548], score: 0.6099
    Epoch: 4, Time: 0.0142 s
    Hyper parameters: [0.3, 0.3204, 0.2464], score: 0.6099
    Epoch: 5, Time: 0.0151 s
    Hyper parameters: [0.3, 0.3164, 0.2382], score: 0.6099
    Epoch: 6, Time: 0.0159 s
    Hyper parameters: [0.3, 0.316, 0.2302], score: 0.5940
    Epoch: 7, Time: 0.0143 s
    Hyper parameters: [0.3, 0.318, 0.2226], score: 0.5940
    Epoch: 8, Time: 0.0150 s
    Hyper parameters: [0.3, 0.3186, 0.2152], score: 0.6099
    Epoch: 9, Time: 0.0177 s

Optimized hyper parameters: [0.3, 0.3186, 0.2152]
Score: 0.6099

Cite

[1] Kong, Qiuqiang, Yong Xu, Wenwu Wang, and Mark D. Plumbley. "Sound Event Detection of Weakly Labelled Data with CNN-Transformer and Automatic Threshold Optimization." arXiv preprint arXiv:1912.04761 (2019).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autoth-qiuqiangkong-0.0.3.tar.gz (3.3 kB view details)

Uploaded Source

Built Distribution

autoth_qiuqiangkong-0.0.3-py3-none-any.whl (4.4 kB view details)

Uploaded Python 3

File details

Details for the file autoth-qiuqiangkong-0.0.3.tar.gz.

File metadata

  • Download URL: autoth-qiuqiangkong-0.0.3.tar.gz
  • Upload date:
  • Size: 3.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for autoth-qiuqiangkong-0.0.3.tar.gz
Algorithm Hash digest
SHA256 e151d1b45419308338967302ce5a36e59b4cd40e9251890e123869084eb417b6
MD5 f84f55aaea8dece4d6bb8b47da7bb035
BLAKE2b-256 013bc129f57db2583e739c166699e5b87ba45f01df282ed3727a59e77c113461

See more details on using hashes here.

File details

Details for the file autoth_qiuqiangkong-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: autoth_qiuqiangkong-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 4.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for autoth_qiuqiangkong-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 ec88f80dd0e653f536433203bff2fd2e710eb9eb55bab39fba4dc08114503085
MD5 6271ccf1a63641734e559281d87a478b
BLAKE2b-256 0f328dfb9300757021862995c00b94f0e0a735da8e48bdfb2a60917591166991

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page