Scalable time series processing
Project description
autotimeseries
Nixtla SDK. Time Series Forecasting pipeline at scale.
autotimeseries is a python SDK to consume the APIs developed in https://github.com/Nixtla/nixtla.
Install
PyPI
pip install autotimeseries
How to use
Check the following examples for a full pipeline:
Basic usage
import os
from autotimeseries.core import AutoTS
autotimeseries = AutoTS(bucket_name=os.environ['BUCKET_NAME'],
api_id=os.environ['API_ID'],
api_key=os.environ['API_KEY'],
aws_access_key_id=os.environ['AWS_ACCESS_KEY_ID'],
aws_secret_access_key=os.environ['AWS_SECRET_ACCESS_KEY'])
Upload dataset to S3
train_dir = '../data/m5/parquet/train'
# File with target variables
filename_target = autotimeseries.upload_to_s3(f'{train_dir}/target.parquet')
# File with static variables
filename_static = autotimeseries.upload_to_s3(f'{train_dir}/static.parquet')
# File with temporal variables
filename_temporal = autotimeseries.upload_to_s3(f'{train_dir}/temporal.parquet')
Each time series of the uploaded datasets is defined by the column item_id
. Meanwhile the time column is defined by timestamp
and the target column by demand
. We need to pass this arguments to each call.
columns = dict(unique_id_column='item_id',
ds_column='timestamp',
y_column='demand')
Send the job to make forecasts
response_forecast = autotimeseries.tsforecast(filename_target=filename_target,
freq='D',
horizon=28,
filename_static=filename_static,
filename_temporal=filename_temporal,
objective='tweedie',
metric='rmse',
n_estimators=170,
**columns)
Download forecasts
autotimeseries.download_from_s3(filename='forecasts_2021-10-12_19-04-32.csv', filename_output='../data/forecasts.csv')
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
autotimeseries-0.0.7.tar.gz
(13.5 kB
view details)
Built Distribution
File details
Details for the file autotimeseries-0.0.7.tar.gz
.
File metadata
- Download URL: autotimeseries-0.0.7.tar.gz
- Upload date:
- Size: 13.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8c30f61fd4b7b397320086904d8a35dd7c91f36f6cba0582a6fcfda568c38495 |
|
MD5 | 2e14a5b67d10c689ae1e2199a5f5f456 |
|
BLAKE2b-256 | 836ed8a01f71cdbcc0a3fcdc1fd041ba328251449c646710be270b26c111fe8f |
File details
Details for the file autotimeseries-0.0.7-py3-none-any.whl
.
File metadata
- Download URL: autotimeseries-0.0.7-py3-none-any.whl
- Upload date:
- Size: 10.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 534ce9d62ef500265f5b3ab2a7a50306b420bcf122a982f2b62e73e6ea255fb8 |
|
MD5 | 36ac6683fe645f4e1a2a6b9cafdfa148 |
|
BLAKE2b-256 | f365189bec84f24f5fa3511c55a257de46055eaf1da89f118da6d28772bad0da |