Skip to main content

"quickly create UIs to interactively prompt, validate, and persist python objects to disk (JSON/YAML) and back using type hints"

Project description

autotui

PyPi version Python 3.8|3.9|3.10 PRs Welcome

This uses type hints to convert NamedTuple's (short struct-like classes) to JSON/YAML, and back to python objects.

It also wraps prompt_toolkit to prompt the user and validate the input for common types, and is extendible to whatever types you want.

Supported Types

This has built-ins to prompt, validate and serialize:

  • int
  • float
  • bool
  • str
  • datetime
  • Enum
  • Decimal
  • Optional[<type>] (or <type> | None)
  • List[<type>] (or list[<type>])
  • Set[<type>] (or set[<type>])
  • other NamedTuples (recursively)

I wrote this so that I don't have to repeatedly write boilerplate-y python code to validate/serialize/deserialize data. As a more extensive example of its usage, you can see my ttally repo, which I use to track things like calories/water etc...

Install

This requires python3.8+, specifically for modern typing support.

To install with pip, run:

pip install autotui

Usage

As an example, if I want to log whenever I drink water to a file:

from datetime import datetime
from typing import NamedTuple

from autotui.shortcuts import load_prompt_and_writeback

class Water(NamedTuple):
    at: datetime
    glass_count: float

if __name__ == "__main__":
    load_prompt_and_writeback(Water, "~/.local/share/water.json")

Which, after running a few times, would create:

~/.local/share/water.json

[
  {
    "at": 1598856786,
    "glass_count": 2.0
  },
  {
    "at": 1598856800,
    "glass_count": 1.0
  }
]

(datetimes are serialized into epoch time)

If I want to load the values back into python, its just:

from autotui.shortcuts import load_from

class Water(NamedTuple):
    #... (same as above)

if __name__ == "__main__":
    print(load_from(Water, "~/.local/share/water.json"))

#[Water(at=datetime.datetime(2020, 8, 31, 6, 53, 6, tzinfo=datetime.timezone.utc), glass_count=2.0),
# Water(at=datetime.datetime(2020, 8, 31, 6, 53, 20, tzinfo=datetime.timezone.utc), glass_count=1.0)]

A lot of my usage of this only ever uses 3 functions in the autotui.shortcuts module; dump_to to dump a sequence of my NamedTuples to a file, load_from to do the opposite, and load_prompt_and_writeback, to load values in, prompt me, and write back to the file.

Enabling Options

Some options/features can be enabled using global environment variables, or by using a contextmanager to temporarily enable certain prompts/features.

As an example, there are two versions of the datetime prompt

  • The one you see above using a dialog
  • A live version which displays the parsed datetime while typing. Since that can cause some lag, it can be enabled by setting the LIVE_DATETIME option.

You can enable that by:

  • setting the AUTOTUI_LIVE_DATETIME (prefix the name of the option with AUTOTUI_) environment variable, e.g., add export AUTOTUI_LIVE_DATETIME=1 to your .bashrc/.zshrc
  • using the options contextmanager:
import autotui

with autotui.options("LIVE_DATETIME"):
    autotui.prompt_namedtuple(...)

Options:

  • LIVE_DATETIME: Enables the live datetime prompt
  • CONVERT_UNKNOWN_ENUM_TO_NONE: If an enum value is not found on the enumeration (e.g. you remove some enum value), convert it to None instead of raising a ValueError
  • ENUM_FZF: Use fzf to prompt for enums
  • CLICK_PROMPT - Where possible, use click to prompt for values instead of prompt_toolkit

Partial prompts

If you want to prompt for only a few fields, you can supply the attr_use_values or type_use_values to supply default values:

# water-now script -- set any datetime values to now
from datetime import datetime
from typing import NamedTuple

from autotui import prompt_namedtuple
from autotui.shortcuts import load_prompt_and_writeback

class Water(NamedTuple):
    at: datetime
    glass_count: float

load_prompt_and_writeback(Water, "./water.json", type_use_values={datetime: datetime.now()})
# or specify it with a function (don't call datetime.now, just pass the function)
# so its called when its needed
val = prompt_namedtuple(Water, attr_use_values={"at": datetime.now})

Since you can specify a function to either of those arguments -- you're free to write a completely custom prompt function to prompt/grab data for that field however you want

For example, to prompt for strings by opening vim instead:

from datetime import datetime
from typing import NamedTuple, List, Optional

from autotui.shortcuts import load_prompt_and_writeback

import click


def edit_in_vim() -> str:
    m = click.edit(text=None, editor="vim")
    return m if m is None else m.strip()


class JournalEntry(NamedTuple):
    creation_date: datetime
    tags: Optional[List[str]]  # one or more tags to tag this journal entry with
    content: str


if __name__ == "__main__":
    load_prompt_and_writeback(
        JournalEntry,
        "~/Documents/journal.json",
        attr_use_values={"content": edit_in_vim},
    )

Can also define those as a staticmethod on the class, so you don't have to pass around the extra state:

class JournalEntry(NamedTuple):
    ...

    @staticmethod
    def attr_use_values() -> Dict:
        return {"content": edit_in_vim}


# pulls attr_use_values from the function
prompt_namedtuple(JournalEntry, "~/Documents/journal.json")

Yaml

Since YAML is a superset of JSON, this can also be used with YAML files. autotui.shortcuts will automatically decode/write to YAML files based on the file extension.

# using the water example above
if __name__ == "__main__":
    load_prompt_and_writeback(Water, "~/.local/share/water.yaml")

Results in:

- at: 1645840523
  glass_count: 1.0
- at: 1645839340
  glass_count: 1.0

You can also pass format="yaml" to the namedtuple_sequence_dumps/namedtuple_sequence_loads functions (shown below)

Picking

This has a basic fzf picker using pyfzf-iter, which lets you pick one item from a list/iterator:

from autotui import pick_namedtuple
from autotui.shortcuts import load_from

picked = pick_namedtuple(load_from(Water, "~/.local/share/water.json"))
print(picked)

To install the required dependencies, install fzf and pip install 'autotui[pick]'

Editing

This also provides a basic editor, which lets you edit a single field of a NamedTuple.

$ python3 ./examples/edit.py
Water(at=datetime.datetime(2023, 3, 5, 18, 55, 59, 519320), glass_count=1)
Which field to edit:

	1. at
	2. glass_count

'glass_count' (float) > 30
Water(at=datetime.datetime(2023, 3, 5, 18, 55, 59, 519320), glass_count=30.0)

In python:

from autotui.edit import edit_namedtuple

water = edit_namedtuple(water, print_namedtuple=True)
# can also 'loop', to edit multiple fields
water = edit_namedtuple(water, print_namedtuple=True, loop=True)

Any additional arguments to edit_namedtuple are passed to prompt_namedtuple, so you can specify type_validators to attr_validators to prompt in some custom way

To install, pip install 'autotui[edit]' or pip install click

Custom Types

If you want to support custom types, or specify a special way to serialize another NamedTuple recursively, you can specify type_validators, and type_[de]serializer to handle the validation, serialization, deserialization for that type/attribute name.

As a more complicated example, heres a validator for timedelta (duration of time), being entered as MM:SS, and the corresponding serializers.

# see examples/timedelta_serializer.py for imports

# handle validating the user input interactively
# can throw a ValueError
def _timedelta(user_input: str) -> timedelta:
    if len(user_input.strip()) == 0:
        raise ValueError("Not enough input!")
    minutes, _, seconds = user_input.partition(":")
    # could throw ValueError
    return timedelta(minutes=float(minutes), seconds=float(seconds))


# serializer for timedelta, converts to JSON-compatible integer
def to_seconds(t: timedelta) -> int:
    return int(t.total_seconds())


# deserializer from integer to timedelta
def from_seconds(seconds: int) -> timedelta:
    return timedelta(seconds=seconds)


# The data we want to persist to the file
class Action(NamedTuple):
    name: str
    duration: timedelta


# AutoHandler describes what function to use to validate
# user input, and which errors to wrap while validating
timedelta_handler = AutoHandler(
    func=_timedelta,  # accepts the string the user is typing as input
    catch_errors=[ValueError],
)

# Note: validators are of type
# Dict[Type, AutoHandler]
# serializer/deserializers are
# Dict[Type, Callable]
# the Callable accepts one argument,
# which is either the python value being serialized
# or the JSON value being deserialized

# use the validator to prompt the user for the NamedTuple data
# name: str automatically uses a generic string prompt
# duration: timedelta gets handled by the type_validator
a = prompt_namedtuple(
    Action,
    type_validators={
        timedelta: timedelta_handler,
    },
)


# Note: this specifies timedelta as the type,
# not int. It uses what the NamedTuple
# specifies as the type for that field, not
# the type of the value that's loaded from JSON

# dump to JSON
a_str: str = namedtuple_sequence_dumps(
    [a],
    type_serializers={
        timedelta: to_seconds,
    },
    indent=None,
)

# load from JSON
a_load = namedtuple_sequence_loads(
    a_str,
    to=Action,
    type_deserializers={
        timedelta: from_seconds,
    },
)[0]

# can also specify with attributes instead of types
a_load2 = namedtuple_sequence_loads(
    a_str,
    to=Action,
    attr_deserializers={
        "duration": from_seconds,
    },
)[0]

print(a)
print(a_str)
print(a_load)
print(a_load2)

Output:

$ python3 ./examples/timedelta_serializer.py
'name' (str) > on the bus
'duration' (_timedelta) > 30:00
Action(name='on the bus', duration=datetime.timedelta(seconds=1800))
[{"name": "on the bus", "duration": 1800}]
Action(name='on the bus', duration=datetime.timedelta(seconds=1800))
Action(name='on the bus', duration=datetime.timedelta(seconds=1800))

The general philosophy I've taken for serialization and deserialization is send a warning if the types aren't what the NamedTuple expects, but load the values anyways. If serialization can't serialize something, it warns, and if json.dump doesn't have a way to handle it, it throws an error. When deserializing, all values are loaded from their JSON primitives, and then converted into their corresponding python equivalents; If the value doesn't exist, it warns and sets it to None, if there's a deserializer supplied, it uses that. This is meant to help facilitate quick TUIs, I don't want to have to fight with it.

(If you know what you're doing and want to ignore those warnings, you can set the AUTOTUI_DISABLE_WARNINGS=1 environment variable)

There are lots of examples on how this is handled/edge-cases in the tests.

You can also take a look at the examples

Testing

git clone https://github.com/seanbreckenridge/autotui
cd ./autotui
pip install '.[testing]'
mypy ./autotui
pytest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autotui-0.4.7.tar.gz (34.3 kB view details)

Uploaded Source

Built Distribution

autotui-0.4.7-py3-none-any.whl (28.0 kB view details)

Uploaded Python 3

File details

Details for the file autotui-0.4.7.tar.gz.

File metadata

  • Download URL: autotui-0.4.7.tar.gz
  • Upload date:
  • Size: 34.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for autotui-0.4.7.tar.gz
Algorithm Hash digest
SHA256 a5c34d7853687054cbab64fa76f580b9f32fe5477d35c17050a232ef9773ab9f
MD5 2aea9577e73d51074eaf5e2145859b68
BLAKE2b-256 5ef6616f04c40e99a4abbe97568d14b866e68255352769b5041815ba94daa43a

See more details on using hashes here.

File details

Details for the file autotui-0.4.7-py3-none-any.whl.

File metadata

  • Download URL: autotui-0.4.7-py3-none-any.whl
  • Upload date:
  • Size: 28.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for autotui-0.4.7-py3-none-any.whl
Algorithm Hash digest
SHA256 7b1fc9ebb755f4735d3fc315943db08e6794d878f8302ab2fc9653aadc46c45d
MD5 a221270041f1acfca37a53d16068a98c
BLAKE2b-256 d00efcb991a19bd6253dc6c4752cb03ba3264a66f01a5d0981cd2d42446ee45b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page