Skip to main content

Hyperparameter tuning

Project description

# autotune
Hyperparameter tuning on GPUs

[![Build Status](](

## Installation

pip install git+git://

# Or get it straight from PyPI

pip install autotune

## Usage

You can use the binary:

autotune -h

Or use it programmatically:

from autotune.tuner import RandomSearch
from autotune.spec import Spec

config = Spec.load('myconf.json')
tuner = RandomSearch('myprog.bin', config)
tuner.tune(2, out='output')

where `myconf.json` looks something like:

"foo": [-1, 1],
"bar": [2.0, 3.0]

This will run 2 commands `myprog.bin --foo $FOO --bar $BAR` where `$FOO` is an integer sampled between `-1` and `1` and `$BAR` is a float sampled between `2.0` and `3.0`.
You can pass in an optional parameter `name='nickname'`, which will add to the command `--nickname $HASH`, where `$HASH` is a hash of the specific parameters used for this command.
You can also pass in an optional parameter `gpu=True`, which will queue jobs onto aavailable GPUs.
The command then becomes `CUDA_VISIBLE_DEVICES=$GPU myprog.bin --foo $FOO --bar $BAR --gpu 0`, where `$GPU` is a free GPU (e.g. no memory usage).

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

autotune-0.0.3-py3-none-any.whl (6.4 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page