Skip to main content

Hyperparameter tuning

Project description

# autotune
Hyperparameter tuning on GPUs

[![Build Status](](

## Installation

pip install pip install git+git://

## Usage

You can use the binary:

autotune -h

Or use it programmatically:

from autotune.tuner import RandomSearch
from autotune.spec import Spec

config = Spec.load('myconf.json')
tuner = RandomSearch('myprog.bin', config)
tuner.tune(2, out='output')

where `myconf.json` looks something like:

"foo": [-1, 1],
"bar": [2.0, 3.0]

This will run 2 commands `myprog.bin --foo $FOO --bar $BAR` where `$FOO` is an integer sampled between `-1` and `1` and `$BAR` is a float sampled between `2.0` and `3.0`.
You can pass in an optional parameter `name='nickname'`, which will add to the command `--nickname $HASH`, where `$HASH` is a hash of the specific parameters used for this command.
You can also pass in an optional parameter `gpu=True`, which will queue jobs onto aavailable GPUs.
The command then becomes `CUDA_VISIBLE_DEVICES=$GPU myprog.bin --foo $FOO --bar $BAR --gpu 0`, where `$GPU` is a free GPU (e.g. no memory usage).

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for autotune, version 0.0.1
Filename, size File type Python version Upload date Hashes
Filename, size autotune-0.0.1-py3-none-any.whl (6.1 kB) File type Wheel Python version py3 Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page