Skip to main content

Python 3 Confluent Schema Registry Client

Project description

[![Build Status](https://travis-ci.org/datamountaineer/python-serializers.svg?branch=master)](https://travis-ci.org/datamountaineer/python-serializers)
[![PyPI](https://img.shields.io/badge/PyPi-0.3-blue.svg)](https://pypi.python.org/pypi/datamountaineer-schemaregistry/0.3)

# Python Schema Registry Client and Serializers/Deserializers

A Python client used to interact with [Confluent](http://confluent.io/)'s
[schema registry](https://github.com/confluentinc/schema-registry). Supports Python 3.6. This also works within a virtual env.

The API is heavily based off of the existing Java API of [Confluent schema registry](https://github.com/confluentinc/schema-registry).

The serializers/deserializers use [fastavro](https://github.com/tebeka/fastavro) for reading and writing by default.
When one does not want to use `fastavro`, it can be disabled by providing `fast_avro=False` to the `MessageSerializer` constructor and Apache Avro's `avro` package will be used instead.

# Installation

Run `python setup.py install` from the source root.

or via pip

```
pip3 install datamountaineer-schemaregistry
```

# Example Usage

Setup

```python
from datamountaineer.schemaregistry.client import SchemaRegistryClient
from datamountaineer.schemaregistry.serializers import MessageSerializer, Util

# Initialize the client
client = SchemaRegistryClient(url='http://registry.host')
```

Schema operations

```python
# register a schema for a subject
schema_id = client.register('my_subject', avro_schema)

# fetch a schema by ID
avro_schema = client.get_by_id(schema_id)

# get the latest schema info for a subject
schema_id,avro_schema,schema_version = client.get_latest_schema('my_subject')

# get the version of a schema
schema_version = client.get_version('my_subject', avro_schema)

# Compatibility tests
is_compatible = client.test_compatibility('my_subject', another_schema)

# One of NONE, FULL, FORWARD, BACKWARD
new_level = client.update_compatibility('NONE','my_subject')
current_level = client.get_compatibility('my_subject')
```

Encoding to write back to Kafka. Encoding by id is the most efficent as it avoids an extra trip to the Schema Registry to
lookup the schema id.

```python
# Message operations

# encode a record to put onto kafka
serializer = MessageSerializer(client)

#build your avro
record = get_obj_to_put_into_kafka()

# use the schema id directly
encoded = serializer.encode_record_with_schema_id(schema_id, record)
```

Encode by schema only.

```python
# use an existing schema and topic
# this will register the schema to the right subject based
# on the topic name and then serialize
encoded = serializer.encode_record_with_schema('my_topic', avro_schema, record)
```

Reading messages

```python
# decode a message from kafka
message = get_message_from_kafka()
decoded_object = serializer.decode_message(message)
```
# Release Notes

**0.3**
* Testing, setup, and import improvements from PR #4

# Testing

```
pip3 install pytest mock
py.test -s -rxs -v
```



# License

The project is licensed under the Apache 2 license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

avroschemaserializer-0.3.1.tar.gz (10.5 kB view details)

Uploaded Source

File details

Details for the file avroschemaserializer-0.3.1.tar.gz.

File metadata

File hashes

Hashes for avroschemaserializer-0.3.1.tar.gz
Algorithm Hash digest
SHA256 4548f6f1de0dd5887ae5babcb53d7a475d4ccdf18fa8f197a036d47928eb57cf
MD5 e201c9c7151de08d5ba8d0e345b472ba
BLAKE2b-256 6fe9063bc0505ce1e6dae428b2c6eff46ebcbbbad63decc82722c36430f209f9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page