Skip to main content

The CDK Construct Library for AWS::ApplicationAutoScaling

Project description

AWS Auto Scaling Construct Library

---

End-of-Support

AWS CDK v1 has reached End-of-Support on 2023-06-01. This package is no longer being updated, and users should migrate to AWS CDK v2.

For more information on how to migrate, see the Migrating to AWS CDK v2 guide.


Application AutoScaling is used to configure autoscaling for all services other than scaling EC2 instances. For example, you will use this to scale ECS tasks, DynamoDB capacity, Spot Fleet sizes, Comprehend document classification endpoints, Lambda function provisioned concurrency and more.

As a CDK user, you will probably not have to interact with this library directly; instead, it will be used by other construct libraries to offer AutoScaling features for their own constructs.

This document will describe the general autoscaling features and concepts; your particular service may offer only a subset of these.

AutoScaling basics

Resources can offer one or more attributes to autoscale, typically representing some capacity dimension of the underlying service. For example, a DynamoDB Table offers autoscaling of the read and write capacity of the table proper and its Global Secondary Indexes, an ECS Service offers autoscaling of its task count, an RDS Aurora cluster offers scaling of its replica count, and so on.

When you enable autoscaling for an attribute, you specify a minimum and a maximum value for the capacity. AutoScaling policies that respond to metrics will never go higher or lower than the indicated capacity (but scheduled scaling actions might, see below).

There are three ways to scale your capacity:

  • In response to a metric (also known as step scaling); for example, you might want to scale out if the CPU usage across your cluster starts to rise, and scale in when it drops again.
  • By trying to keep a certain metric around a given value (also known as target tracking scaling); you might want to automatically scale out an in to keep your CPU usage around 50%.
  • On a schedule; you might want to organize your scaling around traffic flows you expect, by scaling out in the morning and scaling in in the evening.

The general pattern of autoscaling will look like this:

# resource: SomeScalableResource


capacity = resource.auto_scale_capacity(
    min_capacity=5,
    max_capacity=100
)

Step Scaling

This type of scaling scales in and out in deterministic steps that you configure, in response to metric values. For example, your scaling strategy to scale in response to CPU usage might look like this:

 Scaling        -1          (no change)          +1       +3
            │        │                       │        │        │
            ├────────┼───────────────────────┼────────┼────────┤
            │        │                       │        │        │
CPU usage   0%      10%                     50%       70%     100%

(Note that this is not necessarily a recommended scaling strategy, but it's a possible one. You will have to determine what thresholds are right for you).

You would configure it like this:

# capacity: ScalableAttribute
# cpu_utilization: cloudwatch.Metric


capacity.scale_on_metric("ScaleToCPU",
    metric=cpu_utilization,
    scaling_steps=[appscaling.ScalingInterval(upper=10, change=-1), appscaling.ScalingInterval(lower=50, change=+1), appscaling.ScalingInterval(lower=70, change=+3)
    ],

    # Change this to AdjustmentType.PercentChangeInCapacity to interpret the
    # 'change' numbers before as percentages instead of capacity counts.
    adjustment_type=appscaling.AdjustmentType.CHANGE_IN_CAPACITY
)

The AutoScaling construct library will create the required CloudWatch alarms and AutoScaling policies for you.

Scaling based on multiple datapoints

The Step Scaling configuration above will initiate a scaling event when a single datapoint of the scaling metric is breaching a scaling step breakpoint. In cases where you might want to initiate scaling actions on a larger number of datapoints (ie in order to smooth out randomness in the metric data), you can use the optional evaluationPeriods and datapointsToAlarm properties:

# capacity: ScalableAttribute
# cpu_utilization: cloudwatch.Metric


capacity.scale_on_metric("ScaleToCPUWithMultipleDatapoints",
    metric=cpu_utilization,
    scaling_steps=[appscaling.ScalingInterval(upper=10, change=-1), appscaling.ScalingInterval(lower=50, change=+1), appscaling.ScalingInterval(lower=70, change=+3)
    ],

    # if the cpuUtilization metric has a period of 1 minute, then data points
    # in the last 10 minutes will be evaluated
    evaluation_periods=10,

    # Only trigger a scaling action when 6 datapoints out of the last 10 are
    # breaching. If this is left unspecified, then ALL datapoints in the
    # evaluation period must be breaching to trigger a scaling action
    datapoints_to_alarm=6
)

Target Tracking Scaling

This type of scaling scales in and out in order to keep a metric (typically representing utilization) around a value you prefer. This type of scaling is typically heavily service-dependent in what metric you can use, and so different services will have different methods here to set up target tracking scaling.

The following example configures the read capacity of a DynamoDB table to be around 60% utilization:

import aws_cdk.aws_dynamodb as dynamodb

# table: dynamodb.Table


read_capacity = table.auto_scale_read_capacity(
    min_capacity=10,
    max_capacity=1000
)
read_capacity.scale_on_utilization(
    target_utilization_percent=60
)

Scheduled Scaling

This type of scaling is used to change capacities based on time. It works by changing the minCapacity and maxCapacity of the attribute, and so can be used for two purposes:

  • Scale in and out on a schedule by setting the minCapacity high or the maxCapacity low.
  • Still allow the regular scaling actions to do their job, but restrict the range they can scale over (by setting both minCapacity and maxCapacity but changing their range over time).

The following schedule expressions can be used:

  • at(yyyy-mm-ddThh:mm:ss) -- scale at a particular moment in time
  • rate(value unit) -- scale every minute/hour/day
  • cron(mm hh dd mm dow) -- scale on arbitrary schedules

Of these, the cron expression is the most useful but also the most complicated. A schedule is expressed as a cron expression. The Schedule class has a cron method to help build cron expressions.

The following example scales the fleet out in the morning, and lets natural scaling take over at night:

# resource: SomeScalableResource


capacity = resource.auto_scale_capacity(
    min_capacity=1,
    max_capacity=50
)

capacity.scale_on_schedule("PrescaleInTheMorning",
    schedule=appscaling.Schedule.cron(hour="8", minute="0"),
    min_capacity=20
)

capacity.scale_on_schedule("AllowDownscalingAtNight",
    schedule=appscaling.Schedule.cron(hour="20", minute="0"),
    min_capacity=1
)

Examples

Lambda Provisioned Concurrency Auto Scaling

import aws_cdk.aws_lambda as lambda_

# code: lambda.Code


handler = lambda_.Function(self, "MyFunction",
    runtime=lambda_.Runtime.PYTHON_3_7,
    handler="index.handler",
    code=code,

    reserved_concurrent_executions=2
)

fn_ver = handler.current_version

target = appscaling.ScalableTarget(self, "ScalableTarget",
    service_namespace=appscaling.ServiceNamespace.LAMBDA,
    max_capacity=100,
    min_capacity=10,
    resource_id=f"function:{handler.functionName}:{fnVer.version}",
    scalable_dimension="lambda:function:ProvisionedConcurrency"
)

target.scale_to_track_metric("PceTracking",
    target_value=0.9,
    predefined_metric=appscaling.PredefinedMetric.LAMBDA_PROVISIONED_CONCURRENCY_UTILIZATION
)

ElastiCache Redis shards scaling with target value

shards_scalable_target = appscaling.ScalableTarget(self, "ElastiCacheRedisShardsScalableTarget",
    service_namespace=appscaling.ServiceNamespace.ELASTICACHE,
    scalable_dimension="elasticache:replication-group:NodeGroups",
    min_capacity=2,
    max_capacity=10,
    resource_id="replication-group/main-cluster"
)

shards_scalable_target.scale_to_track_metric("ElastiCacheRedisShardsCPUUtilization",
    target_value=20,
    predefined_metric=appscaling.PredefinedMetric.ELASTICACHE_PRIMARY_ENGINE_CPU_UTILIZATION
)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file aws-cdk.aws-applicationautoscaling-1.204.0.tar.gz.

File metadata

File hashes

Hashes for aws-cdk.aws-applicationautoscaling-1.204.0.tar.gz
Algorithm Hash digest
SHA256 59b6305c2846688b1d987e9c807a3b7c6b89d07ef816b1e33758e4b74d6e9bc3
MD5 a6af5d8c1b4fce3e223cc7f0fe4bf41b
BLAKE2b-256 9c7ffa9ff9a3c0e9cb8b8d84fff4a8898241802e55c5af8a5bcbb1ab7f5b2359

See more details on using hashes here.

File details

Details for the file aws_cdk.aws_applicationautoscaling-1.204.0-py3-none-any.whl.

File metadata

File hashes

Hashes for aws_cdk.aws_applicationautoscaling-1.204.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3c59b5cf759824246f4e1822ba47270fe408c3337a2bd47228bc56a164607c55
MD5 776059a51b37f617dffee421727f4384
BLAKE2b-256 30e7d111c8cd4991dc1bcc6215bc5197da5a38b773036aae1c0b8558af71dd3a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page