CDK Constructs for AWS ECS
Project description
CDK Construct library for higher-level ECS Constructs
---This library provides higher-level Amazon ECS constructs which follow common architectural patterns. It contains:
- Application Load Balanced Services
- Network Load Balanced Services
- Queue Processing Services
- Scheduled Tasks (cron jobs)
- Additional Examples
Application Load Balanced Services
To define an Amazon ECS service that is behind an application load balancer, instantiate one of the following:
ApplicationLoadBalancedEc2Service
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
load_balanced_ecs_service = ecs_patterns.ApplicationLoadBalancedEc2Service(stack, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
task_image_options={
"image": ecs.ContainerImage.from_registry("test"),
"environment": {
"TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
"TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
}
},
desired_count=2
)
ApplicationLoadBalancedFargateService
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(stack, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
cpu=512,
task_image_options={
"image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
}
)
Instead of providing a cluster you can specify a VPC and CDK will create a new ECS cluster. If you deploy multiple services CDK will only create one cluster per VPC.
You can omit cluster
and vpc
to let CDK create a new VPC with two AZs and create a cluster inside this VPC.
Additionally, if more than one application target group are needed, instantiate one of the following:
ApplicationMultipleTargetGroupsEc2Service
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# One application load balancer with one listener and two target groups.
load_balanced_ec2_service = ApplicationMultipleTargetGroupsEc2Service(stack, "Service",
cluster=cluster,
memory_limit_mi_b=256,
task_image_options={
"image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
},
target_groups=[{
"container_port": 80
}, {
"container_port": 90,
"path_pattern": "a/b/c",
"priority": 10
}
]
)
ApplicationMultipleTargetGroupsFargateService
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# One application load balancer with one listener and two target groups.
load_balanced_fargate_service = ApplicationMultipleTargetGroupsFargateService(stack, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
cpu=512,
task_image_options={
"image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
},
target_groups=[{
"container_port": 80
}, {
"container_port": 90,
"path_pattern": "a/b/c",
"priority": 10
}
]
)
Network Load Balanced Services
To define an Amazon ECS service that is behind a network load balancer, instantiate one of the following:
NetworkLoadBalancedEc2Service
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
load_balanced_ecs_service = ecs_patterns.NetworkLoadBalancedEc2Service(stack, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
task_image_options={
"image": ecs.ContainerImage.from_registry("test"),
"environment": {
"TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
"TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
}
},
desired_count=2
)
NetworkLoadBalancedFargateService
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
load_balanced_fargate_service = ecs_patterns.NetworkLoadBalancedFargateService(stack, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
cpu=512,
task_image_options={
"image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
}
)
The CDK will create a new Amazon ECS cluster if you specify a VPC and omit cluster
. If you deploy multiple services the CDK will only create one cluster per VPC.
If cluster
and vpc
are omitted, the CDK creates a new VPC with subnets in two Availability Zones and a cluster within this VPC.
Additionally, if more than one network target group is needed, instantiate one of the following:
- NetworkMultipleTargetGroupsEc2Service
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Two network load balancers, each with their own listener and target group.
load_balanced_ec2_service = NetworkMultipleTargetGroupsEc2Service(stack, "Service",
cluster=cluster,
memory_limit_mi_b=256,
task_image_options={
"image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
},
load_balancers=[{
"name": "lb1",
"listeners": [{
"name": "listener1"
}
]
}, {
"name": "lb2",
"listeners": [{
"name": "listener2"
}
]
}
],
target_groups=[{
"container_port": 80,
"listener": "listener1"
}, {
"container_port": 90,
"listener": "listener2"
}
]
)
- NetworkMultipleTargetGroupsFargateService
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Two network load balancers, each with their own listener and target group.
load_balanced_fargate_service = NetworkMultipleTargetGroupsFargateService(stack, "Service",
cluster=cluster,
memory_limit_mi_b=512,
task_image_options={
"image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
},
load_balancers=[{
"name": "lb1",
"listeners": [{
"name": "listener1"
}
]
}, {
"name": "lb2",
"listeners": [{
"name": "listener2"
}
]
}
],
target_groups=[{
"container_port": 80,
"listener": "listener1"
}, {
"container_port": 90,
"listener": "listener2"
}
]
)
Queue Processing Services
To define a service that creates a queue and reads from that queue, instantiate one of the following:
QueueProcessingEc2Service
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
queue_processing_ec2_service = QueueProcessingEc2Service(stack, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
image=ecs.ContainerImage.from_registry("test"),
command=["-c", "4", "amazon.com"],
enable_logging=False,
desired_task_count=2,
environment={
"TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
"TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
},
queue=queue,
max_scaling_capacity=5
)
QueueProcessingFargateService
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
queue_processing_fargate_service = QueueProcessingFargateService(stack, "Service",
cluster=cluster,
memory_limit_mi_b=512,
image=ecs.ContainerImage.from_registry("test"),
command=["-c", "4", "amazon.com"],
enable_logging=False,
desired_task_count=2,
environment={
"TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
"TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
},
queue=queue,
max_scaling_capacity=5
)
when queue not provided by user, CDK will create a primary queue and a dead letter queue with default redrive policy and attach permission to the task to be able to access the primary queue.
Scheduled Tasks
To define a task that runs periodically, instantiate an ScheduledEc2Task
:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Instantiate an Amazon EC2 Task to run at a scheduled interval
ecs_scheduled_task = ScheduledEc2Task(stack, "ScheduledTask",
cluster=cluster,
scheduled_ec2_task_image_options={
"image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
"memory_limit_mi_b": 256,
"environment": {"name": "TRIGGER", "value": "CloudWatch Events"}
},
schedule=events.Schedule.expression("rate(1 minute)")
)
Additional Examples
In addition to using the constructs, users can also add logic to customize these constructs:
Add Schedule-Based Auto-Scaling to an ApplicationLoadBalancedFargateService
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
from aws_cdk.aws_applicationautoscaling import Schedule
from ..application_load_balanced_fargate_service import ApplicationLoadBalancedFargateService, ApplicationLoadBalancedFargateServiceProps
load_balanced_fargate_service = ApplicationLoadBalancedFargateService(stack, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
desired_count=1,
cpu=512,
task_image_options={
"image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
}
)
scalable_target = load_balanced_fargate_service.service.auto_scale_task_count(
min_capacity=5,
max_capacity=20
)
scalable_target.scale_on_schedule("DaytimeScaleDown",
schedule=Schedule.cron(hour="8", minute="0"),
min_capacity=1
)
scalable_target.scale_on_schedule("EveningRushScaleUp",
schedule=Schedule.cron(hour="20", minute="0"),
min_capacity=10
)
Add Metric-Based Auto-Scaling to an ApplicationLoadBalancedFargateService
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
from ..application_load_balanced_fargate_service import ApplicationLoadBalancedFargateService
load_balanced_fargate_service = ApplicationLoadBalancedFargateService(stack, "Service",
cluster=cluster,
memory_limit_mi_b=1024,
desired_count=1,
cpu=512,
task_image_options={
"image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
}
)
scalable_target = load_balanced_fargate_service.service.auto_scale_task_count(
min_capacity=1,
max_capacity=20
)
scalable_target.scale_on_cpu_utilization("CpuScaling",
target_utilization_percent=50
)
scalable_target.scale_on_memory_utilization("MemoryScaling",
target_utilization_percent=50
)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for aws-cdk.aws-ecs-patterns-1.28.0.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 98054f29f27e7c4a55ff71a621292472d8c3169e9b9b3eb15d46ddcec8f2957b |
|
MD5 | 0e9663ed28b4577a0620ac120e0ac15d |
|
BLAKE2b-256 | c990131b22136a39c808ba94c05c9c5eefdd67dec91909fa43af145f9e0235bd |
Hashes for aws_cdk.aws_ecs_patterns-1.28.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8e86a3b209d31059ae20a7f29c159183914ba3ac45c0797b78ea4b4ecda5c651 |
|
MD5 | faeaeec9cf1765b8c1a215b8d33fa060 |
|
BLAKE2b-256 | 0d15c2162247c35ea80def3cfbeca9106a95ca7b6d97dbe003d548e2a4322add |