Skip to main content

The CDK Construct Library for AWS::ECS

Project description

CDK Construct library for higher-level ECS Constructs

---

cdk-constructs: Stable


This library provides higher-level Amazon ECS constructs which follow common architectural patterns. It contains:

  • Application Load Balanced Services
  • Network Load Balanced Services
  • Queue Processing Services
  • Scheduled Tasks (cron jobs)
  • Additional Examples

Application Load Balanced Services

To define an Amazon ECS service that is behind an application load balancer, instantiate one of the following:

  • ApplicationLoadBalancedEc2Service
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
load_balanced_ecs_service = ecs_patterns.ApplicationLoadBalancedEc2Service(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("test"),
        "environment": {
            "TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
            "TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
        }
    },
    desired_count=2
)
  • ApplicationLoadBalancedFargateService
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    cpu=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    }
)

load_balanced_fargate_service.target_group.configure_health_check(
    path="/custom-health-path"
)

Instead of providing a cluster you can specify a VPC and CDK will create a new ECS cluster. If you deploy multiple services CDK will only create one cluster per VPC.

You can omit cluster and vpc to let CDK create a new VPC with two AZs and create a cluster inside this VPC.

You can customize the health check for your target group; otherwise it defaults to HTTP over port 80 hitting path /.

Fargate services will use the LATEST platform version by default, but you can override by providing a value for the platformVersion property in the constructor.

Fargate services use the default VPC Security Group unless one or more are provided using the securityGroups property in the constructor.

By setting redirectHTTP to true, CDK will automatically create a listener on port 80 that redirects HTTP traffic to the HTTPS port.

If you specify the option recordType you can decide if you want the construct to use CNAME or Route53-Aliases as record sets.

If you need to encrypt the traffic between the load balancer and the ECS tasks, you can set the targetProtocol to HTTPS.

Additionally, if more than one application target group are needed, instantiate one of the following:

  • ApplicationMultipleTargetGroupsEc2Service
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# One application load balancer with one listener and two target groups.
load_balanced_ec2_service = ApplicationMultipleTargetGroupsEc2Service(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=256,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    },
    target_groups=[{
        "container_port": 80
    }, {
        "container_port": 90,
        "path_pattern": "a/b/c",
        "priority": 10
    }
    ]
)
  • ApplicationMultipleTargetGroupsFargateService
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# One application load balancer with one listener and two target groups.
load_balanced_fargate_service = ApplicationMultipleTargetGroupsFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    cpu=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    },
    target_groups=[{
        "container_port": 80
    }, {
        "container_port": 90,
        "path_pattern": "a/b/c",
        "priority": 10
    }
    ]
)

Network Load Balanced Services

To define an Amazon ECS service that is behind a network load balancer, instantiate one of the following:

  • NetworkLoadBalancedEc2Service
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
load_balanced_ecs_service = ecs_patterns.NetworkLoadBalancedEc2Service(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("test"),
        "environment": {
            "TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
            "TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
        }
    },
    desired_count=2
)
  • NetworkLoadBalancedFargateService
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
load_balanced_fargate_service = ecs_patterns.NetworkLoadBalancedFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    cpu=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    }
)

The CDK will create a new Amazon ECS cluster if you specify a VPC and omit cluster. If you deploy multiple services the CDK will only create one cluster per VPC.

If cluster and vpc are omitted, the CDK creates a new VPC with subnets in two Availability Zones and a cluster within this VPC.

If you specify the option recordType you can decide if you want the construct to use CNAME or Route53-Aliases as record sets.

Additionally, if more than one network target group is needed, instantiate one of the following:

  • NetworkMultipleTargetGroupsEc2Service
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Two network load balancers, each with their own listener and target group.
load_balanced_ec2_service = NetworkMultipleTargetGroupsEc2Service(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=256,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    },
    load_balancers=[{
        "name": "lb1",
        "listeners": [{
            "name": "listener1"
        }
        ]
    }, {
        "name": "lb2",
        "listeners": [{
            "name": "listener2"
        }
        ]
    }
    ],
    target_groups=[{
        "container_port": 80,
        "listener": "listener1"
    }, {
        "container_port": 90,
        "listener": "listener2"
    }
    ]
)
  • NetworkMultipleTargetGroupsFargateService
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Two network load balancers, each with their own listener and target group.
load_balanced_fargate_service = NetworkMultipleTargetGroupsFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    },
    load_balancers=[{
        "name": "lb1",
        "listeners": [{
            "name": "listener1"
        }
        ]
    }, {
        "name": "lb2",
        "listeners": [{
            "name": "listener2"
        }
        ]
    }
    ],
    target_groups=[{
        "container_port": 80,
        "listener": "listener1"
    }, {
        "container_port": 90,
        "listener": "listener2"
    }
    ]
)

Queue Processing Services

To define a service that creates a queue and reads from that queue, instantiate one of the following:

  • QueueProcessingEc2Service
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
queue_processing_ec2_service = QueueProcessingEc2Service(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    image=ecs.ContainerImage.from_registry("test"),
    command=["-c", "4", "amazon.com"],
    enable_logging=False,
    desired_task_count=2,
    environment={
        "TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
        "TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
    },
    queue=queue,
    max_scaling_capacity=5,
    container_name="test"
)
  • QueueProcessingFargateService
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
queue_processing_fargate_service = QueueProcessingFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=512,
    image=ecs.ContainerImage.from_registry("test"),
    command=["-c", "4", "amazon.com"],
    enable_logging=False,
    desired_task_count=2,
    environment={
        "TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
        "TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
    },
    queue=queue,
    max_scaling_capacity=5,
    container_name="test"
)

when queue not provided by user, CDK will create a primary queue and a dead letter queue with default redrive policy and attach permission to the task to be able to access the primary queue.

Scheduled Tasks

To define a task that runs periodically, instantiate an ScheduledEc2Task:

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Instantiate an Amazon EC2 Task to run at a scheduled interval
ecs_scheduled_task = ScheduledEc2Task(stack, "ScheduledTask",
    cluster=cluster,
    scheduled_ec2_task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
        "memory_limit_mi_b": 256,
        "environment": {"name": "TRIGGER", "value": "CloudWatch Events"}
    },
    schedule=events.Schedule.expression("rate(1 minute)"),
    enabled=True,
    rule_name="sample-scheduled-task-rule"
)

Additional Examples

In addition to using the constructs, users can also add logic to customize these constructs:

Add Schedule-Based Auto-Scaling to an ApplicationLoadBalancedFargateService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
from aws_cdk.aws_applicationautoscaling import Schedule
from ..application_load_balanced_fargate_service import ApplicationLoadBalancedFargateService, ApplicationLoadBalancedFargateServiceProps

load_balanced_fargate_service = ApplicationLoadBalancedFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    desired_count=1,
    cpu=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    }
)

scalable_target = load_balanced_fargate_service.service.auto_scale_task_count(
    min_capacity=5,
    max_capacity=20
)

scalable_target.scale_on_schedule("DaytimeScaleDown",
    schedule=Schedule.cron(hour="8", minute="0"),
    min_capacity=1
)

scalable_target.scale_on_schedule("EveningRushScaleUp",
    schedule=Schedule.cron(hour="20", minute="0"),
    min_capacity=10
)

Add Metric-Based Auto-Scaling to an ApplicationLoadBalancedFargateService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
from ..application_load_balanced_fargate_service import ApplicationLoadBalancedFargateService

load_balanced_fargate_service = ApplicationLoadBalancedFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    desired_count=1,
    cpu=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    }
)

scalable_target = load_balanced_fargate_service.service.auto_scale_task_count(
    min_capacity=1,
    max_capacity=20
)

scalable_target.scale_on_cpu_utilization("CpuScaling",
    target_utilization_percent=50
)

scalable_target.scale_on_memory_utilization("MemoryScaling",
    target_utilization_percent=50
)

Change the default Deployment Controller

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
from ..application_load_balanced_fargate_service import ApplicationLoadBalancedFargateService

load_balanced_fargate_service = ApplicationLoadBalancedFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    desired_count=1,
    cpu=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    },
    deployment_controller={
        "type": ecs.DeploymentControllerType.CODE_DEPLOY
    }
)

Set deployment configuration on QueueProcessingService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
queue_processing_fargate_service = QueueProcessingFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=512,
    image=ecs.ContainerImage.from_registry("test"),
    command=["-c", "4", "amazon.com"],
    enable_logging=False,
    desired_task_count=2,
    environment={},
    queue=queue,
    max_scaling_capacity=5,
    max_healthy_percent=200,
    min_health_percent=66
)

Set taskSubnets and securityGroups for QueueProcessingFargateService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
queue_processing_fargate_service = QueueProcessingFargateService(stack, "Service",
    vpc=vpc,
    memory_limit_mi_b=512,
    image=ecs.ContainerImage.from_registry("test"),
    security_groups=[security_group],
    task_subnets={"subnet_type": ec2.SubnetType.ISOLATED}
)

Define tasks with public IPs for QueueProcessingFargateService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
queue_processing_fargate_service = QueueProcessingFargateService(stack, "Service",
    vpc=vpc,
    memory_limit_mi_b=512,
    image=ecs.ContainerImage.from_registry("test"),
    assign_public_ip=True
)

Select specific vpc subnets for ApplicationLoadBalancedFargateService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
load_balanced_fargate_service = ApplicationLoadBalancedFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    desired_count=1,
    cpu=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    },
    vpc_subnets={
        "subnets": [ec2.Subnet.from_subnet_id(stack, "subnet", "VpcISOLATEDSubnet1Subnet80F07FA0")]
    }
)

Set PlatformVersion for ScheduledFargateTask

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
scheduled_fargate_task = ScheduledFargateTask(stack, "ScheduledFargateTask",
    cluster=cluster,
    scheduled_fargate_task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
        "memory_limit_mi_b": 512
    },
    schedule=events.Schedule.expression("rate(1 minute)"),
    platform_version=ecs.FargatePlatformVersion.VERSION1_4
)

Use the REMOVE_DEFAULT_DESIRED_COUNT feature flag

The REMOVE_DEFAULT_DESIRED_COUNT feature flag is used to override the default desiredCount that is autogenerated by the CDK. This will set the desiredCount of any service created by any of the following constructs to be undefined.

  • ApplicationLoadBalancedEc2Service
  • ApplicationLoadBalancedFargateService
  • NetworkLoadBalancedEc2Service
  • NetworkLoadBalancedFargateService
  • QueueProcessingEc2Service
  • QueueProcessingFargateService

If a desiredCount is not passed in as input to the above constructs, CloudFormation will either create a new service to start up with a desiredCount of 1, or update an existing service to start up with the same desiredCount as prior to the update.

To enable the feature flag, ensure that the REMOVE_DEFAULT_DESIRED_COUNT flag within an application stack context is set to true, like so:

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
stack.node.set_context(cxapi.ECS_REMOVE_DEFAULT_DESIRED_COUNT, True)

The following is an example of an application with the REMOVE_DEFAULT_DESIRED_COUNT feature flag enabled:

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
app = App()

stack = Stack(app, "aws-ecs-patterns-queue")
stack.node.set_context(cxapi.ECS_REMOVE_DEFAULT_DESIRED_COUNT, True)

vpc = ec2.Vpc(stack, "VPC",
    max_azs=2
)

QueueProcessingFargateService(stack, "QueueProcessingService",
    vpc=vpc,
    memory_limit_mi_b=512,
    image=ecs.AssetImage(path.join(__dirname, "..", "sqs-reader"))
)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aws-cdk.aws-ecs-patterns-1.92.0.tar.gz (179.3 kB view hashes)

Uploaded Source

Built Distribution

aws_cdk.aws_ecs_patterns-1.92.0-py3-none-any.whl (180.7 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page